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ABSTRACT
School of Graduate Studies
The University of Alabama in Huntsville

Degree Ph. D. College/Dept Science/Physics

Name of Candidate Andrew Howard Resnick

Title:_An Experimental Investigation of the Static Equilibria and Dynamics of Liquid
Bridges

A liquid bridge is a volume of liquid held between two or more solid supports. In
the case of small disk supports with a sharp edge, the contact line between the bridge and
the support disk will be anchored along the edge of the disk. For these cases the solid
presents a geometrical singularity and the contact angle is indeterminate within a given
range. This dissertation presents research conducted on liquid bridges with anchored
contact lines. The three major topics covered are: determining the role of support geometry
on static equilibria, liquid bridge dynamical behavior, and forces exterted by a liquid bridge
on a support structure. The work was primarily experimental and conducted in a “Plateau
tank” that allowed for the simulation of equivalent low-gravity conditions. The main thrust
of the experimental work involved the use of a high resolution optical measurement system
for imaging the dynamic zone shape, measurement of the static and dynamic contact angles
and non-invasive analysis of excited surface modes. The liquid bridge was manipulated by
computer controlled linear actuators which allowed precise control over the physical
characteristics of the bridge.

Experiments have been carried out to locate a bifurcation point along the maximum
volume axisymmetric stability margin. Below the critical slenderness the bifurcation from
an axisymmetric to a stable nonaxisymmetric configuration is supercritical. However,

above this critical slenderness, the bifurcation is subcritical.
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A series of experiments analyzed the effect on axisymmetric bridge stability by
using support disks of different radii. The shape behavior as transition points were
approached, as well as the limiting case of a vanishing support radius was investigated.

Experiments were performed to determine the resonant frequencies of
axisymmetric bridges subject to lateral vibrations. Anomolous results led to a series of
experiments to characterize nonlinearities present in the dynamic bridge shape.

Finally, an attempt was made to experimentally measure the force exerted by the
bridge on the lower support disk. This was done through use of a force balance apparatus.
Particular attention was paid to the behavior of the bridge as the minimum volume stability

limit was approached.
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Chapter 1

INTRODUCTION

1.1 Introduction and background

A liquid bridge, or captive drop, is a mass of liquid held by surface tension between
two or more solid supports (see Figure 1.1). Liquid bridges occur in a variety of physical
and technological situations and a great deal of theoretical and experimental work has been
done to determine axisymmetric equilibria for various disk configurations, bridge

slenderness and rotations.

Figure 1.1. Equilibrium configurations of liquid bridges between solid supports. In (a)
and (b) surfaces anchored to sharp disk edges are shown. In (c), (d), and (e) the contact
angle takes on its equilibrium value .

There have also been numerous investigations of the dynamics of axisymmetric
liquid bridges subject to different excitations (impulses, vibration, etc.). Some preliminary

work has been performed on nonaxisymmetric bridge stability, forces exerted by

\
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axisymmetric bridges, and dielectric liquid bridges. Orr et al. [1] cite a number of
applications of the results of liquid bridge research. For example, volume is essential for
calculations of water saturation [2] and connate water estimates in oil and gas reservoirs
[3]. Capillary condensation and evaporation problems in porous media require knowledge
of bridge curvatures [4,5]. Forces exerted by liquid bridges on solids are important in
powder metallurgy during liquid phase sintering [6], in powder wetting problems (7], the
deformation of moist porous and unconsolidated granular media [8,9], and in adhesion
problems [10]. Liquid bridges and drops are also important factors when considering the
positioning of liquid masses using surface tension forces and propellant management in
liquid fuel tanks [11]. More recent applications of liquid bridges include the floating zone
method of crystal growth [12-14]. Liquid bridge oscillation and decay properties can also
be used for viscosity and surface tension measurements of molten materials at high
temperatures [15]. Pendular liquid bridges occur widely in the powder technology industry
and are a major influence on powder flow process and mechanical properties [16]. In
porous media flow, liquid-liquid displacement can lead to evolution of pendant and sessile
lobes or lenticular bridges. The formation of liquid bridges from the gel that coats lung
micro-airways results in occlusion of the bronchioles and is a precursor to respiratory
problems and lung collapse [17-19].

Although liquid bridges have many technological applications, they are also
interesting from a basic science point of view. Axisymmetric bridges, essentially a one-
dimensional physical system, can display a very rich and complex behavior. The
experiments described in chapter 4 have been well documented previously, and were
performed here primarily to test and calibrate system performance. The results of chapter
5 represent part of an ongoing study at the Center for Microgravity and Materials Research
(CMMR) to analyze multiparametric stability of liquid bridges. In addition to verification
of numerical calculations, a new method was found to measure the interfacial energy

between isopycnic imiscible fluids, and the behavior of a bridge in the limit of a vanishing
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lower disk support radius was observed. The results of experiments described in chapter 6
indicate that to properly model laterally oscillated dynamic liquid bridge behavior, a full
non-linear treatment of the system is necessary. This has direct application to models of
crystal growth in a g-jitter environment. In addition, a new method was used to visualize
the spatial modes of an oscillating liquid bridge in real-time. Finally, the experiments
described in chapter 7 shed insight into the behavior of a bridge as the minimum volume
stability limit is approached. This experimental apparatus could be used to probe thin film
statics and dynamics, as well as other dynamic fluid processes such as drop coalescence.
Using rigid sharp-edged disk supports, the bridge can be positioned so that the
contact line between the liquid and the solid disk is anchored at the edge of the disk. For
these cases where the solid presents such a geometrical singularity, the contact angle is
indeterminate within a given range, and the contact line remains anchored to the edge.
Supports without sharp edges, such as spheres or large flat plates, will allow the fluid to
attain an equilibrium contact angle. This will persist provided the contact line does not
move. However, since the contact line is not anchored, vibrations or other motion of the
support can result in motion of the contact line in order to accommodate contact angle
changes as the bridge deforms. Most theoretical and experimental work deals with liquid
bridges with a pinned contact line. Slobozhanin and Tyuptsov [20], and later Dyson [21]
showed that for a bridge anchored to a sharp edge, the contact angle ¢ can vary freely
within the range ¢e < ¢ < 0 + T — 8 where  is the acute angle defined by the sharp edge

(see Figure 1.2).

Figure 1.2. Contact angle ¢ at a sharp edge: 0¢ < ¢ <7 -8+ de



This pinning or anchoring of the contact line is sometimes referred to as canthotaxis
[22,23] and allows the bridge to admit a wider range of stable configurations than would be
possible if the contact angle was restricted to be the equilibrium angle (as it would be for a
flat or some other smooth surface). Other types of supports have been considered,
including flat plates [24-29] plates and spheres [30] and spheres [16, 31-33].

The shapes and stability of liquid bridges are governed by the following

dimensionless numbers (see Figure 1.3)

(s) \l/g>0

Figure 1.3. Equilibrium configuration of an axisymmetric liquid bridge. The gravity
vector points toward the smaller disk if g > 0, and towards the larger disk if g < 0.
Bo = ApRzg/y = Bond number
A% = V()/TCR2L = relative volume

A =L/2R = slenderness



We = ApR3Q2y =Weber number

B1, B2 = lower and upper external contact angles

01, 02 = Jower and upper internal contact angles = 180 - 3
K =R1/R> = ratio of disk radii

= =Q1/Q) = ratio of disk rotation rates

£ =d/R = relative disk offset

Here Ap is the density difference between the bridge and the surrounding fluid, R is
the characteristic length associated with the bridge (usually the average radius of the
supporting disks), g is the gravitational acceleration, y is the surface energy or interfacial
tension (see section 2.2.), L is the distance between the disks, d is the lateral offset between
disk centers and € is the average angular rotation rate of the disks. Bo is a measure of the
ratio of buoyancy to surface tension forces. The Weber number represents a balance
between centripetal and surface tension forces.

For cases where the effective static and dynamic Bond numbers are small, the
resulting dynamics of a bridge may differ considerably from the dynamics of bridges at
large Bo. The roles of support geometry and contact angle dynamics in determining liquid
bridge stability at low Bond numbers are investigated in this dissertation. The work was
primarily experimental and was conducted in a “Plateau tank” to simulate low-gravity
conditions. The main thrust of the experimental work involved the use of an high
resolution Fourier optical measurement system for imaging the dynamic bridge shape,
measurement of the static and dynamic contact angles and non-invasive analysis of excited
surface modes. The liquid bridge supports were moved by computer controlled linear
actuators. This allowed precise control of several physical characteristics of the bridge,
specifically the volume and the slenderness, as well as vertical, lateral and rotational

vibration rates. Other experimental approaches included the replacement of the lower
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support disk with a thin disk attached to a cantilever arm to measure the force exerted by a
bridge on the lower support disk.

The key concept in the present approach to imaging the bridge is the concept of
optically frequency filtering the illuminating light, or apodization. The ability to perform
image manipulations through alterations on the Fourier plane began with experiments by
Abbe [34] and Porter [35]. However, the initial use of Fourier methods to alter optical
images date from experiments by Maréchal [36] and Marquet [37], motivated by Duffieux
[38]. Methods of Fourier analysis techniques applied to electrical signals and networks
quickly became applied to optical systems [39-42]. The development and use of spatial
filters to alter optical images, primarily to eliminate graining and aberrations followed [43-
47). It was also realized that optical manipulations of the Fourier transformation of an
optical scene can correspond to what are otherwise time-consuming mathematical
operations [48,49].

The Plateau or neutral buoyancy method {22] relies upon the principle that if two
imiscible liquids of equal density are configured such that one envelops the other then the
curvature of the equilibrium interface is a constant. That is, despite the fact that gravity
creates a hydrostatic pressure gradient in each liquid, the interface between the two liquids
behaves as if the gravitational acceleration is zero. For non-zero gravity, the density
mismatch can be adjusted to cover a range of Bond numbers. In each liquid the pressure

pi> i=1,2, satisfies

Vp; = -pigez (1.1a)

or

Vp; =0 (1.1b)

where pT = p; + Pigz, and p; is the density of the ith liquid phase. At the interface between

the two fluids



p*1 - p*2 = (p1-p2)gz + 271 (1.2)

Here J is the mean curvature of the surface, fluid 1 is the inner (bridge) fluid, and
fluid 2 is the outer (bath) fluid. When p| and p; are equal, the curvature is a constant, and
zero-gravity conditions are obtained. Thus, the outer fluid compensates for the hydrostatic
pressure gradient along the interface. To obtain a non-zero Bo, the outer bath density can
be changed either by adjusting the composition or temperature [50].

Several scientific requirements had to be met to ensure accurate and precise
results. The primary requirement is to produce accurate and stable Bond numbers over the
range 10-! > Bo > 104, This range is given by practical density differences between the
bridge and bath liquids for the upper bound and measurement precision for the lower
bound. This implies control over bath temperature, bath composition, and an accurate
method to determine the densities and interfacial energies of the bridge and bath over
various temperatures. Lower Bond numbers can also be obtained by using support disks
with a smaller radius. The experimental observations include recording the static interface
shape and dynamic contact angle behavior during dynamic processes. Features on the
order of tens of microns must be viewed with light that passes through distorting media.
Precise control of vibration frequency, amplitude, and direction of the support disks are
also necessary. Frequencies range from tenths of Hertz up to a few Hertz, and vibration
amplitudes from a fraction of a millimeter to a centimeter. During vibration or rotation,
the disk supports must remain parallel, and not exhibit runout or wobble. They must also
be easily accessible and replaceable, and the tank should be easy to clean. The bridge and
bath fluids must be mutually imiscible, and neither should chemically react with the

support disks. The experimental apparatus meets all of these requirements.



1.2  Summary of previous research on liquid bridges, contact angles and
interfacial energies
1.2.1 Liquid bridges

Since the early days of research into the effects of low gravity on physical
phenomena much attention has been focused on the equilibria and dynamics of liquid
bridges and columns held between coaxial circular disks [15, 24-29, 51-134] . There has
been a great deal of theoretical work to determine axisymmetric equilibria for various disk
configurations, bridge slenderness and rotations [51-94]. The dynamics of axisymmetric
liquid bridges subject to different excitations (impulses, vibration etc.) [95-133] has also
been studied in some detail. There has been an equally healthy record of experimental
work on the ground [51-57, 60-62, 113-116, 132], in sounding rockets [67-70] and in
orbiting spacecraft [58, 59, 63-66].

Ground based studies have been made using the Plateau or neutral buoyancy
method [51-54, 56-57, 60-62, 113, 115, 116] to simulate microgravity conditions. Small
scale (millimetric) bridges have also been used to avoid gravitational effects [54]. The
Plateau method involves surrounding a liquid bridge with a liquid which has the same
density but with which it is imiscible. The effect of gravity can then be effectively
examined by changing the Bond number. This is done by changing the density difference
between the bridge and the surrounding fluid. While these methods produce useful results,
they are limited either by the small zone size [22], or the presence of an outer fluid which

limits the application of the results (22, 60, 134, 135].

1.2.1.1 Liquid column shapes and stability limits

Axisymmetric bridges held between coaxial and unequal disks have been studied
extensively and are well documented. The shape of a liquid surface can be determined
theoretically from the Gauss-Laplace equation [136] that represents a balance between the

pressure difference across the surface and the capillary pressure (the product of the surface
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tension and the mean curvature). For axisymmetric bridges the volume-, gravity-, rotation-
and slenderness-dependencies of the stability limits of the family of surfaces that can exist
between two circular disks have been examined theoretically and experimentally [52-61].
A summary of all possible liquid shapes between equal and unequal disks is found in
references [84, 94]. Orr et al. [30] developed expressions for shapes of bridges between a
sphere and a parallel plate for Bo =0. These expressions can be readily extended to
bridges between parallel plates.

For zero—gravity conditions, the equilibrium surface is a surface of constant mean
curvature and, for the axisymmetric case, the bridge can have a cylindrical, spherical,
catenoidal, unduloidal or nodoidal shapes. Typically, previous investigations of weightless
bridge stability have assumed that the perturbations satisfy the constraints of constant liquid
volume and fixed contact lines. Our experimental techniques, described in chapter 3,
satisfies these constraints. We were concerned with the behavior of the bridge as it loses
stability. We investigated the nature of the bridge shape near specific bifurcation and
transition points that occur on the axisymmetric stability boundary. Previous work is
summarized below.

Rayleigh [137] showed that a right circular cylindrical liquid jet will break up if its
length exceeds its circumference. This stability limit is also observed by cylindrical liquid
bridges contained between coaxial discs at zero Bond number. It has been established
theoretically [138] and experimentally [52, 138] that a cylindrical bridge is stable if the
slenderness A < T and unstable if A > . Here the critical perturbation is axisymmetric
[137, 138]. It was suggested by Gillette & Dyson [76] that, when the relative volume
V = 1, there are no stable non—cylindrical axisymmetric surfaces. Rivas & Meseguer
[108] determined the linear dependence of A on V for critical unduloids that are close to a
cylinder. Constant volume spherical bridges are always stable. This follows from
Plateau’s experimental results and is easily proved theoretically (see, for example,

references [80, 136]). Plateau [138] determined the region of existence for catenoidal
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bridges experimentally. A theoretical and experimental analysis of the stability of
catenoidal bridges with respect to axisymmetric perturbations was later carried out by Erle.
Gillette & Dyson [95]. Besides cylinders, spheres and catenoids, Plateau [138] also
undertook experimental investigations of the stability of unduloidal and nodoidal bridge
surfaces and qualitatively described the results. For axisymmetric perturbations and
arbitrary values of A and V, the stability limits were first constructed by Gillette & Dyson
[76] on the basis of Howe's theory [139] (outlined in [76, 95, 140]). They also proved that
an axisymmetric bridge with no equatorial symmetry plane is always unstable.
Furthermore, they later proved [140] that axisymmetric perturbations are the most
dangerous for weightless bridges that are symmetric about the z-axis and have surfaces
represented by single-valued functions r = r(z). Slobozhanin [80] analyzed the stability of
an axisymmetric bridge with respect to arbitrary (i.e., both nonaxisymmetric and
axisymmetric) perturbations and constructed the general stability boundary in the (A, V)-
plane. (These results are presented in English in [136], and the stability boundary is
reproduced in [14, 119, 141].) Quantitative experimental data on the boundary of the
stability region were obtained by Elagin, Lebedev, and Tsmelev [61] (“microzone™
method), and by Sanz and Martinez [53] and Russo and Steen [142] (neutral buoyancy
technique).

The conditions for which capillary surfaces with contact lines pinned to
solid edges are most unstable to perturbations of the liquid surface, rather than to
perturbations of the contact line, were obtained in a more general analysis by Slobozhanin
& Tyuptsov [20] (see also [22]). This was also examined for the particular cases of liquid
bridges held between disks and rods by Slobozhanin [20, 143].

If an axisymmetric equilibrium state is stable, then, for a small variation of
the parameters A and V, it has a unique continuous extension and the stability of the state
is preserved. However, if the equilibrium state lies on the stability boundary, the

uniqueness of the continuous extension is violated and the equilibrium state bifurcates.
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Methods for analyzing bifurcations of the equilibrium states of a capillary liquid mass and
the possible bifurcation structures have been described in earlier work (see, for example,
(22,74, 141-147]).

To account for Plateau’s experimental results, Michael [148] proposed
possible bifurcation patterns that are plausible when the different axisymmetric equilibrium
shapes of a bridge lose their stability. He further emphasized the need to study the
corresponding bifurcation problem in detail. This problem has been solved for a critical
cylinder. The solution is a particular case obtained by Brown & Scriven [144] and by
Vega & Perales [95]. The dynamical behavior of an axisymmetric liquid bridge as it loses
stability on the boundary segment along which axisymmetric perturbations are critical was
studied in [99, 105]. Finally, a sophisticated analysis of the nature of the axisymmetric
bifurcations along this boundary segment was made in a recent paper by Lowry and Steen
[141].

The problem of stability under axial gravity has been examined for particular cases
by several workers The stability of cylindrical volumes (V = 1) to axisymmetric
perturbations has been examined by Coriell e al. [12]}, Meseguer {73], and DaRiva &
Martinéz [83]. Vega and Perales [95] obtained analytical approximations in the small
Bond number limit. Heywang [149] considered the stability to axisymmetric perturbations
for fixed contact angles of 90°. Coriell and Cordes [82] also examined this case but
allowed for arbitrary perturbations.

Slobozhanin [117] examined the stability of liquid bridges held between
equidimensional coaxial circular disks and subject to steady axial gravity. In contrast to
previous work, he considered both axisymmetric and non-axisymmetric perturbations.
For Bo > 3.06, he showed that stability is always lost to non-axisymmetric perturbations.
He also considered several contact angles at each disk and found that as Bo — 0, the 90°
case becomes singular. Russo and Steen [142] investigated the zero Bond number

maximum volume limit theoretically (using an energy method) and experimentally (in a
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Plateau chamber). They found that for rotund bridges (i.e. V > 1) an axisymmetric bridge
is first unstable to non-axisymmetric disturbances. This confirmed the experimental
results of Plateau who observed that axisymmetric rotund bridges lose stability when the
tangent to the free surface at the disk edge is parallel to the flat upper surface of the disk.

Slobozhanin and Perales [118] recently extended these analyses to include the full
range of possible contact angles and a wide range of Bo, V, and A. They showed that for a
finite Bond number, the stability margin can be represented in the V-A parameter space as
a curve defined by three segments (see Figure 1.4). The upper segment of the curve
corresponds to the maximum volume stability limit. Between points O and C stability is
lost to non-axisymmetric perturbations. At present no theory exists for the stability of
these non-axisymmetric configurations [118] although recent experimental work [150]
indicates that some of these configurations are stable (see Chapter 4).

For Bo < 3.06 the segment from D to C is characterized by loss of stability to
axisymmetric perturbations. This leads to breaking of the bridge into a pendant and sessile
drop. A small satellite drop is also created. The third segment of the stability margin
corresponds to small volumes and slenderness (V, A < 1). When gravity is directed
downward and the bridge liquid is denser than the surrounding medium, loss of stability
occurs via dewetting from the upper disk. The experimental results of Bezdenejnykh et al.

[55] are in good qualitative agreement with the theory of Slobozhanin and Perales.
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Figure 1.4.  Stability diagram for bridges held between coaxial equal circular disks with
axial acceleration. Bo = O (dashed line) Bo = 0.1 (solid line). A, maximum volume; B,
maximum slenderness; C, nonaxisymmetric-axisymmetric transition; D, zero angle at the
top disk; E, local pressure minimum; F, local minimum of upper contact angle; G, local
maximum of upper contact angle; H, local pressure maximum. (After [1 181)

Vogel [25, 26] and Langbein [27] have examined the stability of bridges held
between flat plates. Here the contact angle is constrained to a given value. Vogel
considered zero Bo cases (constant mean curvature). He found that the liquid bridges are
symmetric with respect to the plates if the contact angles at both plates are equal. He also
showed that for a family of stable liquid surfaces, the capillary pressure increases as the
actual volume decreases. The shapes are sections of nodoids, catenoids, and unduloids. A
stable liquid surface cannot exhibit an inflection point between the plates. The unduloids
become unstable whenever their inflection point coincides with the contact point. Langbein

[27] examines the minimum volume stability condition by considering the liquid volume
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as a function of the capillary pressure. When a family of solutions of the capillary equation
have two neighboring solutions with equal volume, the energy is at a saddle point.

Shear stabilization of bridges has been examined theoretically and experimentally.
[24, 113, 116, 151, 152]. Certain shear flows have been shown to be able to stabilize a
cylindrical annulus of viscous liquid bounded and sheared by an ambient liquid. Shear
applied to liquid columns damps the axisymmetric instability, but not to the extent that all
wavelengths decay. Liquid columns with a central rod, however, can be completely
stabilized by a shear flow. Lubyimov [153] has shown that for an annular liquid column
surrounded by an ambient liquid contained in a cylindrical vessel, the columns can be
stabilized through application of circularly polarized vibration.

There have been few theoretical studies of the stability limits and hydrostatics of
initially non-axisymmetric liquid bridges. To date, work has been confined to studies of
the effects of lateral gravity [96, 120-122] and eccentric rotation [74, 93] for bridges
supported by coaxial and non-coaxial equidimensional disks. Perales [96] used an
asymptotic method to study the bifurcation of a cylindrical bridge subject to lateral or
transverse gravity. Later numerical studies [120-122] confirmed this result. Laveron and
Perales [122] have undertaken a more general approach using computational techniques
and obtained bifurcation diagrams for non-axisymmetric bridges subject to a transverse,
inclined gravity vector. Their work is restricted to the minimum volume limit and gives a
detailed analysis of the nature of the bifurcations. They find that for lateral gravity,
cylindrical volume bridges with A >2.38 will lose stability at a subcritical bifurcation for
which the associated eigenfunction is antisymmetric. It is speculated that this will lead to a
configuration of two nonsymmetric drops. This has been confirmed recently by Alexander
et al. [121], who also find a satellite drop following the first bifurcation. For A < 2.38
stability is lost at a turning point with an associated symmetric eigenfunction; breaking is
symmetric. For a given Bond number the minimum volume stability margin with lateral

gravity corresponds to the minimum volume limit for the zero Bond number stability



15

margin for axisymmetric bridges. Laveron and Perales have also investigated the stability
of a gravity vector slightly inclined from the lateral. They show that for these cases, loss of
stability occurs at a turning point.

Apart from unpublished work using microzones [154], experimental investigations
of the stability of non-axisymmetric bridges under simulated or actual low gravity
conditions have been restricted to investigations of the C-mode rotational instability [57,

69].

1.2.1.2 Oscillations and vibration

Mason [51] found standing waves could be formed on liquid bridge surfaces by
vibrating one of the supports. During the early 1990's there was renewed interest in the
study of liquid bridge oscillations. To date, theoretical analyses have involved inviscid
bridges [61, 62, 104, 124, 28, 131, 133], one-dimensional models [53, 55, 87, 89, 98, 99,
100, 104-106, 125, 127, 132] boundary layer analyses [128], linearized models and some
full numerical simulations. Oscillations have been examined in the limits Oh << 1, Oh =1
and Oh >> 1 [155]. (Here Oh is the Ohnesorge number, Oh = W/(pyR)!/2 where W is the
dynamic viscosity.) For Oh << 1 Tsamopolous et al. [15] found that damping rate and
oscillation frequency increased with axial and azimuthal wavenumber. For small bridges,
gravity did not appear to affect the eigenfrequency despite distortion of the static and
dynamic shapes. In the small Oh limit the eigenfrequency is given by Q= @ + ®;0h1/2
[155] where the first correction to the inviscid mode ®q depends only on A and the mode
being perturbed. Borkar and Tsamopolous [128] used a boundary layer analysis for Oh
>> 1 and calculated oscillation frequencies and damping rates for bridges undergoing small
amplitude oscillations. Damping was found to be due to either the viscous boundary layer

or the restrained motion of the three phase contact line. Higueras et al. [155] extended
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analyses to O(Oh)* valid for weakly dissipative bridges. Our experiments into the
behavior of bridges vibrating near resonance focused on the nonlinear behavior of both the

eigenfrequency and the eigenmode.

1.2.1.2.1 Axisymmetric oscillations

Meseguer and Perales [125] used the linear Cosserat model to study the effects of
step changes in low magnitude steady acceleration and later [132] carried out an
experimental study and linear analysis of the vibration of axisymmetric viscous bridges.
Transfer functions for both disks were calculated. Zhang and Alexander [106] examined
the sensitivity of liquid bridges to axial acceleration for the case of simultaneous excitation
of both disks.

Langbein [29] has determined the resonant frequencies of axisymmetric bridges for
V =1 by first calculating oscillations of infinite liquid columns. For each frequency an
infinite set of oscillations is obtained. These are then superposed to find solutions for finite
columns. Explicit dependencies between the eigenfrequencies and A and Oh are obtained.
Ahrens et al. [156] have measured the resonance curves of small liquid columns using
stroboscopic illumination and pressure sensors attached to the disks. Recently, Morse et
al. [157] have measured the resonance curves by exciting the bridge with ultrasonic
acoustic radiation.

Non-linear oscillations have been simulated by Chen and Tsamopolous [130]
using the full Navier-Stokes equations. Other analysis of non-linear mechanical
oscillations are in recent papers by Nicolds and Vega [158], Alexander and Zhang [129],
and Meseguer et al. [127]. Experimental studies of nonlinear effects during oscillation of

small bridges have also been carried out [114, 159]. It was observed that the

* f(e) is O(e) when lim fe) _ 0
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eigenfrequencies decrease as the oscillation amplitude is increased. A similar "softening”
effect was reported by Eidel [133].

Meseguer et al. [87, 105, 107, 108) and Zhang and Alexander [106] used 1D
models to analyze the oscillation of bridges to the point of breaking. Shulkes [134] used a
finite element to solve the velocity-potential equations governing the progression of an
axisymmetric inviscid liquid bridge toward breakage. He compared his results to 1D
Cosserat and slice models. It was concluded that 1D models do not adequately represent

the dynamics when the bridge is close to breaking.

1.2.1.2.2 Non-axisymmetric oscillations

Experimental and theoretical studies of non-axisymmetric oscillations are limited.
Small amplitude inviscid non-axisymmetric oscillations have been examined theoretically
by Gaiidn and Barrero [97] for small free inviscid oscillations and included the effect of the
outer fluid. They calculated the first natural frequency for both axisymmetric and
transverse modes (nonaxisymmetric modes) as a function of slenderness and Bond
number for cylindrical volume bridges (V = 1). They also located the locus of points in
Bond-number frequency space at which both axisymmetric and transverse modes have the
same first frequency. It was also found that at critical slenderness A both modes have
zero frequency. This point was found to be a bifurcation point corresponding to the
axisymmetric-nonaxisymmetric transition described earlier.

Experimental work with lateral oscillation of the lower disk was also carried out
by Sanz and Lopez-Diez [62]. They examined free frequencies, deformation modes,
velocity fields and the influence of the surrounding viscous bath. For density matched
conditions, i.e., Bo << I, they found that only the azimuthal mode m = I case could be
excited. It was found that, due to viscous effects, only the lower longitudinal modes could
be obtained. Tsamopolous et al. [15] examined small viscous oscillations caused by

lateral oscillation of the lower support disk in the absence of an encapsulating fluid and for
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V = | and Bo = 0. They examined the first five non-axisymmetric modes for azimuthal
wavenumbers m = I and 2. Their calculated results agreed with those obtained in [63].
They also found that the bridge remained stable to non-axisymmetric disturbances even
when the bridge slenderness was increased beyond the Rayleigh limit. This is in accord
with the static stability results of Slobozhanin and Perales [118] described earlier (and also

results for liquid jets [137] and annular core flows [160]).

1.2.1.3 Rotation

Although not discussed in detail in this dissertation, for completeness and
comparison, previous work is presented. For rotating bridges, the Weber number, which
is the ratio of centripetal to surface tension forces, is the important parameter governing
surface shapes whenever Bo << We, i.e. when the centrifugal acceleration greatly exceeds
the gravitational acceleration. For coaxial disks, the bridge may be subject to rotation
which can result in a C-mode deformation or jump-rope instability of the bridge as
observed by Carruthers et al. on Skylab [58]. Rotation also modifies the stability limits.
For example, the maximum stable slenderness, Amax, of a cylindrical column rotating with
a circular frequency € is inversely proportional to the square root of the Weber number,
i.e. Amax =T /(1 + We)l/2.

If B = 0 and We > 0, the relation between critical values of A and We is also
defined analytically [145, 161] (see also [136, 162-164]). For We = 0 and B > 0, the
bridge stability to axisymmetric perturbations was studied in [12] and, if B << 1, in [95,
98]. The stability with respect to arbitrary (rather than only axisymmetric) perturbations
was analyzed in [117, 165] (see also [118, 136]). It was found both theoretically (for
We > 0 and Bo << 1 [74, 95]) and experimentally [66, 135] that even weak gravity may
considerably narrow the stability region for an isorotating liquid bridge with V = 1. The
effect of gravity and isorotation on the stability to axisymmetric perturbations for a bridge

with V = 1 and A close to Tt (2.75 < A < &) was studied in [74, 66, 166]. An analysis of
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the bifurcation problem for the case V = 1, We > 0,0 <Bo<< 1 [74, 81, 95] showed that

the loss of stability results in breakage of a liquid bridge.

For the case of a prescribed value of By, the stability problem has previously been
considered only for the limiting cases of zero-gravity and isorotation, or non-zero gravity
and no rotation. For an isorotating weightless liquid bridge (Bo = 0, We 2 0) with B =
90°, only cylindrical surfaces may be stable and any other surfaces are either critical or
unstable [117, 165]. The dependence of A and V on We for neutrally stable surfaces with
B1 = 80° and B; = 75° was obtained in [79, 167]. For any fixed value of B in the interval
0 < B1 < 90°, it has been shown that an isorotating weightless bridge loses stability with
respect to nonaxisymmetric perturbations [168]. The related stability problem for arbitrary
values of Bo was first solved in [82] and later in {136]. In addition to B} = 90°, the cases
B1 = 80° and B = 75° have also been considered [117, 137, 165]. The shape of the
molten zone during growth of silicon and germanium crystals (By = 79° and 77°) was

analyzed in [91].

1.2.1.4 Force measurements

There are several papers devoted to the calculations and experimental measurement
of the forces exerted by liquid bridges on their supports [16, 30-33]. These are mainly for
bridges held between spherical supports. Previous work has concentrated on characterizing
pendular bridges between spheres in terms of their volume, curvature and force of
adhesion between the spheres. Static and dynamic situations have been analyzed.
Mazzone et al. [32] found that the force required to separate two moving particles 1is
sometimes two orders of magnitude higher than for the static case due to the viscous
resistance to motion in the dynamics case. We were interested in performing accurate
measurements of the force exerted by a bridge on a disk support, when the contact line 1s

pinned, especially near static stability limits.
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1.2.1.5 Electric fields

Although not discussed in detail in this dissertation, for completeness and
comparison, previous work is presented. The first studies of the effects of electric fields on
liquid bridges were undertaken by Gonzalez e al. [56]. Since then interest in these effects
has increased [153, 169-173]. The electric field always plays a stabilizing role in the
dielectric limit and lowers the minimum volume stability limit. By increasing the electric
field and simultaneously decreasing the volume, the symmetry of the breaking process in
the presence of a gravitational field can be changed such that two equal volume drops rather

than two unequal drops are formed [169].

1.2.2. Contact angle and interfacial energy

In cases where Bo << 1, the physics are dominated by the interfacial energy. The
theory of interfacial energy, also called surface tension (see [174, 175] for important
differences) is briefly reviewed. The subjects of contact angle, contact line motion
(wetting), and interfacial energy are entire fields of inquiry in themselves, and only a
passing reference to relevant overlapping portions will be made here.

Of special importance are the basic theory of an interface (especially in terms of a
material dividing surface), experimental techniques used to measure the interfacial energy,
and the wetting of fluids on a rough substrate. In order to properly calculate Bo, accurate
measurements of the interfacial energy had to be performed. The support disk surfaces
were rough, and thus the wetting behavior of the oil needed to be studied in order to make a
proper materials selection.

There has been a great deal of research on the theory of interfacial energy (see [176-
184] for a few major texts) as well as different methods of interfacial energy measurement
[185-202]. The concept of interfacial energy as the energy of a surface of division between

separate phases of materials has been applied to a diverse group of objects [203-206].
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Finally, there has been a great deal of work applied to fluid flow problems involving a
moving three-phase line [211-232].

The problem begins with an attempt to mathematically describe and experimentally
measure an infinitesimally thin interface. Historically, aside from superficial observations
by Aristotle [233] and Galileo [234], the beginning of serious inquiry into the nature of
interfacial energy and contact angle began with Young in 1805 [235] with the development

of Young’s equation:

Ysv - Ysl = Ylv COS O¢ (1.3)

where 7s; is the interfacial energy between the solid and the liquid, Ysv is the
interfacial energy between the solid and the vapor, Yiv is the interfacial energy between the
liquid and the vapor, and 0 is the equilibrium contact angle. This equation is a simple
balance of force at a three-phase contact line. The physical assumptions made in this
model are that the solid surface is ideal (nondeformable) in the region of the contact line,
and that the three-phase line has little or no curvature. In 1869, Dupré [236] introduced the
concepts of the work of adhesion and the work of cohesion in an effort to place the theory
of capillarity on a thermodynamic foundation. However, it was Gibbs [181], in 1878, who
made the first major advance in the theory of dividing surfaces. Gibbs rigorously derived
Laplace's equation relating the local pressure difference across a dividing surface to the
local curvature of the surface by minimizing the thermodynamic free energy E - TS of the
system when a dividing surface of small curvature is varied. In analyzing the equilibrium
of two fluids and a solid, Gibbs allowed the contact line to move off the surface. Although
this does not affect the result if the fluids and the solid meet at a continuous (flat) part of the
solid, it does if the fluids and the solid meet at a corner of the solid. Gibbs found that there

is an equilibrium contact angle at the corner of the solid, where in reality, a range of contact
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angles is allowed. This was proven later [20,21]. Gibbs then made an unsuccessful
attempt [181] to incorporate the strain of a solid into his calculations.

The overwhelming majority of Gibbs work effectively placed theory well beyond
experimental verification, and little theoretical work was carried out for several decades.
Bangham and Razouk [237] recognized that in a three phase system, the equilibrium
interfacial free energies sy and Yy are related to the pure surface energies of the solid with
a vacuum Ys, and the liquid with its own saturated vapor 7y, by the equilibrium film
pressures Mgy and Tyy. Simply put, Ysy - ¥s = Tsv, and Yy - Y1 = miy. Thus Young’s

equation is modified to be:

Vs - Tsy - Ysl = (Y1 - Tv) €OS Qe (1.4)

In addition, a term 75) can be added which represents adsorption in the solid-liquid
interface. For most systems, the film pressures s and ®jy can be neglected, and only Ty
is given consideration. Good, in [184], points out that ignoring the film pressure entirely
may produce incorrect results, as some systems may have Yy much lower than y. Fox
and Zisman [238] used an empirical method to determine s, which is to plot y linearly
against ¢ for a series of liquids having a decreasing Y. This empirical method will only
work for pure substances. Also, this method will not work when more than two materials
are present at an interface. Good [177, 178, 179] was the next pioneer in surface science,
and his collaborations with Girifalco [177, 178}, van Oss, and Chaudhury [239-241] were
the next significant attempts at understanding the ideas of wetting, contact angles, and
solubility. In 1957 and 1960, Good and Girifalco published several papers introducing the
“geometric mean rule” [177, 178]. Through use of the geometrical mean rule, Good and
Girifalco were able to eliminate Y from Young's equation and give support for Fox and
Zisman’s approach of a limit approaching the critical surface energy that is a measure of

the pure surface free energy of the solid. Later developments incorporated the effects of
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acids and bases [239-241]. In addition, the theory of capillarity has recently been

generalized to include surfaces of moderate or large curvature [181-183].

A major thrust of contact angle research attempted to resolve the phenomenon of
contact angle hysteresis. Freundlich [242] was the first to experimentally establish the
existence of contact angle hysteresis. In fact, there is a range of contact angles that can exist
between the so-called “advancing” contact angle ¢, and the “receding” contact angle ¢r.
The accepted theoretical basis for contact angle hysteresis is that the substrate is non-ideal.
That is, the surface is not smooth, rigid or homogeneous.

Wenzel [243] recognized that Young's equation may only hold locally, not over the
entire surface, especially if the surface is rough. By defining & to be the ratio of actual

surface area to the geometrically smooth area, Young's equation is modified to:

E(Ysv - YsI) = Ylv €08 dw (1.5)

Where 0w is the Wenzel contact angle, which approaches the equilibrium contact

angle as the surface roughness increases, as derived rigorously by Good [244].
Neumann [176] carried out a thorough analysis of menisci, and derived
Young's equation by varying the Helmholtz free energy as a function of the contact angle.
It was necessary to distinguish between 0, the phenomenological contact angle, ¢, the
(unique) contact angle that solves Young's equation, ¢, and ¢r, the advancing and receding
contact angles, 0w, the Wenzel contact angle, and ¢c, the Cassie contact angle. Cassie
[245] proposed that for a heterogeneous surface, with intrinsic contact angles ¢e] and Qe2,

and fractional surface areas £| and X, the apparent contact angle ¢c is given by

cos Oc = L1 cos Pe + X2 COS Be2 (1.6)
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Note that ¢c and ¢w do not constitute Young contact angles, because they do not
apply to smooth, homogeneous solid surfaces. Neumann also carried out a systematic
computational analysis of piece-wise heterogeneous surfaces. He concluded that most, if
not all, contact angle hysteresis can be explained by considering the effect of a
heterogeneous surface with patches of differing free energies, and corresponding different
equilibrium contact angles. His computations showed that the patchwork of
heterogeneities causes the free energy of the interface to have several metastable states, and
this leads to different equilibrium contact angles. Neumann showed that the hysteresis
effect can be removed by making the grains smaller than the thickness of the liquid/vapor
interface, approximately 0.1 um. If the grain size is smaller than this, the surface appears
homogeneous to the interface and the hysteresis effect will disappear.

Neumann then went on to discuss surface roughness [176], by idealizing a
rough surface as a sawtooth pattern with symmetric deviations about 90 degrees (the
smooth normal). In this case metastable states of the contact angle exist as well. Neumann
postulated that the contact angle will fall to the lowest possible angle, zero degrees, but did
not continue this line of inquiry. In fact, several methods [246] of determining surface
tension, including capillary rise methods, drop weight methods, the du Nouy ring method,
and the Wilhelmy plate method demands a zero degree contact angle to obtain maximum
accuracy. Good and Neumann [200] even suggest that the Wilhelmy plate be roughened
using ground glass or sandblasted to make sure the angle is zero degrees. We observed
that the best experimental conditions were obtained when the disks were slightly
roughened, allowing the oil to completely wet the surface.

When discussing contact angles, it is imperative to be absolutely clear as to which
contact angle is being referred to. There is ¢, the true (microscopic) contact angle that may
or may not be measurable (see section 2.2.2), ¢a and ¢;, the advancing and receding
contact angles, ¢, the contact angle that satisfies Young’s equation, given all the

assumptions implicit in the equation, and ¢w and ¢c, contact angles that refer to rough or
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heterogeneous solid substrates. In general, the current investigation attempted to measure
®. As seen below in section 1.2.3, what was actually measured was a local slope (the
“macroscopic” contact angle) which is related to ¢ (the “microscopic™ contact angle) in a
complex way. This problem can be addressed by measuring the slope in a consistent

location from one experiment to another, at similar magnifications.

1.2.2.1 Experimental techniques to measure the interfacial energy

Adamson [246] comprehensively lists over 20 different experimental techniques to
measure the interfacial energy between two fluids. These can be broken down into three
broad types of measurements: shape analysis of a drop, a balance of gravitational and
interfacial energies, and dynamical flow-type measurements. We tried many different

methods, as each has its own set of assumptions and limitations.

1.2.2.1.1 Shape analysis

Shape analysis is an “inverse” method that involves fitting an observed shape to a
computed profile. This includes the bubble shape, pendant drop, and the method of
curvature. This method is also used in some liquid bridge research, in that the digitized
profile of the bridge is fitted to a model by allowing the Bond number (interfacial energy)
to vary. In all of these cases, the interfacial energy is calculated from a set of parameters
measured from an image. We have used the hanging drop method. It is a simple method,
and gives good accuracy. Shape parameters are measured from a pendant drop, which is
the largest stable drop that remains attached to a round support, (Figure 1.5) and the

interfacial energy is given by [246]:

2
_Apgde” (1.7)

Y=
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where 1/H is a function of d¢/de and can be found in a look-up table, such as {197, 247]. It

is important that the drop be as large as possible yet remain stable.

Figure 1.5. Image of a hanging drop.

1.2.2.1.2 Balance of gravity and interfacial energy

These methods include the capillary rise, drop weight, du Nouy tensiometer,
Wilhelmy plate, maximum bubble pressure, sessile drop, wire, capillary pull, and film
balance methods [246]. All of these methods rely on the balance of gravitational potential
energy and interfacial energy. These methods, with the exception of the drop weight,
sessile drop, capillary rise, and maximum bubble pressure methods require use of an

electrobalance to measure the small value of . It is usually necessary to satisfy the perfect
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wetting condition (in the sessile drop method, perfect non-wetting) to provide an accurate
result. It is also important in this method to have a circular dropping tip. Some of these
methods can still be used if the condition of ¢ = 0° or 180° is not met, but then the contact
angle must be accurately measured as well. We have used the drop weight method. It
requires a minimum of equipment, is fairly accurate and the contact angle does not need to
be measured. In the drop weight method, a drop is slowly created and allowed to detach
from the dropping tip. It is assumed that this is a quasi-static process, and that the detached

drop is the theoretical maximum in weight. The interfacial energy is given by [246]:

ApgVy
=—te’'0 1.8
Y 2nrf (1.8)

where f is a correction factor that accounts for the fact that not all of the drop detaches from

the dropping tip. The values of ‘f’ for mercury in air are tabulated in [197, 247].

1.2.2.1.3 Dynamical methods

This category includes the falling column of liquid method, flow method, levitated
or oscillating drop, oscillating jet, rotating drop, capillary wave and liquid sheet methods
[246]. These all require a large investment in time and equipment to accurately perform a
measurement. The interfacial energy is related to the eigenfrequency of the drop. The
capillary wave method can be used as part of a light scattering experiment. Microscopic
surface waves are always present, and the interfacial energy is related to the period and
wavelength of these oscillations. The liquid sheet method uses colliding jets of fluid to
create a stable circular sheet, the radius of which is related to the interfacial energy. The
oscillating jet and flow methods require flow out of a non-circular orifice, and the
interfacial energy is related to the slenderness of the orifice and the wavelength of the

exiting jet of liquid.
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1.2.3 Contact line motion

Although this problem was not studied in detail, it is a relevant issue regarding
materials selection (Chapter 3) and contact angle measurements (Chapter 6). The majority
of pioneering work on the theory of contact line motion has been made by Dussan [212,
216, 217, 228-230] in collaboration with others, in terms of identifying the appropriate
boundary conditions of contact line motion to solve the Navier-Stokes equation for the
shape of the fluid interface. The application of the no-slip boundary condition to a moving
fluid boundary introduces a non-integrable singularity at a three-phase line {229, 239]. In
response to this, several models incorporating slip have been introduced [225, 229, 231,
232] resulting in surprisingly good agreement between experiment and theory {213]. In
1989 Ngan and Dussan [217] showed that the formulation of the boundary-value problem

relies only upon one parameter €2:

- _ 2sin¢ |2 .
Q_¢+Ca{¢_cos¢ sin¢)|:lan +1]+l,(¢)}, (1.9

which is a combination of the true contact angle ¢, the capillary number Ca = uv/y, the
length scale “a” associated with the inner (microscopic) region of the fluid and the slip
length Ls, and a function that depends on the specific slip model lj(¢). If in fact a slip
model is appropriate, the contact angle as a function of distance “r” from the contact line

obeys: (see Figure 1.6)

o(r) = Q+Ca 2sin Q& T
Q-cosRQsin@@ a

(1.10)
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Figure 1.6. A moving fluid interface under high magnification.

Dussan was primarily concerned by determining under what conditions the inner
region determines the behavior of the bulk region. In contrast to this approach are the
molecular dynamics simulations of Koplik [221, 222] in which the no-slip boundary
condition arises naturally as a result of a dense liquid interacting with a solid wall. It
appears (in the simulations) that the individual molecules absorb a high but finite amount
of shear at the expense of some slip. The main thrust of the articles is that a simulation
involving only a few thousand molecules is enough to display continuum (i.e. no-slip)
behavior. What all of the various slip models and models incorporating moving contact
lines share is the insistence that the contact angle be measured as close to the contact line as
possible.

Although progress over the years has produced much insight into understanding
how a fluid behaves in the vicinity of a three-phase line, many questions still need to be
answered. There has not, as yet, been a definitive statement on how the dynamic or static

apparent contact angle and the true contact angle are related, or even how to define the
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apparent contact angle. Neither has there been a satisfactory method of characterizing
rough or chemical inhomogeneous surfaces, other than some rudimentary statistical
methods [184]. The applicability of the geometric combining rule needs to be explored
further, particularly for solutions. The surface free energy of a strained solid has not been

given satisfactory treatment.

1.3. A brief summary of experimental results

In this section, the experimental results obtained during the course of this research
project are briefly presented. Details are presented in later chapters.

A series of experiments studied the static stability limits of axisymmetric liquid
bridges (chapters 4 and 5). Other experiments followed the dynamic behavior of liquid
bridges whose supports underwent sinusoidal motion (chapter 6). Finally, a series of
experiments measured the force exerted by the liquid bridge on the lower support disk

(chapter 7).

1.3.1 Static stability limit results

This can be divided into two different groups: K= 1 and K # 1.

For K = 1 (chapter 4), the axisymmetric stability limits at Bo = 0.002, 0.054, and
0.089 were measured (Figure 4.8). The transition point between axisymmetric and
nonaxisymmetric breaking modes was found for Bo = 0.089. Agreement with theory was
good for the lower limit, but the upper experimental limit was consistently 5-10% below
the theoretical limit at large values of A. It was found that all transitions to a
nonaxisymmetric state lead to a stable nonaxisymmetric bridge except for the transition
point between axi- and nonaxisymmetric states. The nature of the bifurcation across the
maximum volume stability limit was studied and was found to transit between a
supercritical bifurcation and a subcritical bifurcation at an slenderness between 0.40 and

0.60. Bridges with slenderness 0.2, 0.3, 0.4, 0.6, 0.8 and 1.0 pulled near Bond number 0
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and as small injections of oil were added, the change in shape of the bridge was monitored
under high magnification. The rate of change of shape to volume increment, d&/dV, was
plotted and the curves (Figure 4.12) show a rounded appearance for slenderness greater
than 0.60 and a peaked appearance for slenderness less than 0.40. This agrees with theory.

For K # 1 (chapter 5), the stability limits of axisymmetric bridges at Bo = +0.1 for
K =0.09, 0.2, 0.4, 0.6 and 0.8 were measured (Figure 5.2). Agreement with theory was
good for the lower limit and the upper limit was again consistently 5-10% below the
theoretical limit at large values of A. The transition of the neck location for Bo = 0.1 was
found and was used to measure the interfacial energy of silicone oil and the bath fluid
(Figure 3.12). The transition on the upper stability boundary from nonaxisymmetric to
axisymmetric states was found for K = 0.2 (Figure 5.4). The behavior of a bridge near the

lower stability limit as K — 0 was investigated for K = 0.09 (Figures 5.6, 5.7).

1.3.2 Dynamics

Several experiments were performed in an effort to measure the resonant
frequencies (chapter 6). The values of N = 1,2,3; m = 1 resonances were estimated for
bridges of slenderness 2.0, 2.6, and 3.0 (Figure 6.2) (V = 1, 100 cs oil). The ratio of
maximum bridge displacement relative to disk displacement was measured for a bridge of
slenderness 2.6 from 0.86 to 0.973 Hz at amplitudes of 6.3*10-3, 3.16%10-2 and 6.3 *¥10-2
g (Figure 6.4). Contact angle motion was measured (Figure 6.5) for bridges of
slenderness 2.6 and 3.0 (V=1, S cs oil) in the neighborhood of N =1, m = 1 for the

following conditions:

slenderness 2.6: frequency from 0.65 to 0.75 Hz, increment = 0.01 Hz, acceleration =
1*, 2%, 3* and 4*10- g, static Bo < 104,
slenderness 3.0: frequency from 0.52 to 0.66 Hz, increment = 0.01 Hz, acceleration =

2*%104 g, static Bo < 104
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The contact angle was measured many times during one complete cycle to ensure
the maximum and minimum were measured. The gain curves show evidence of
saturation. The range of contact angle motion shows a small dip at the resonant frequency.
For slenderness 3.0, the dip occurs on the opposite side of the resonance peak than
slenderness 2.6. The resonance frequency shows a positive drift with increasing
acceleration (slenderness 2.6) The Fourier plane was imaged during lateral vibration of a
bridge slenderness 2.6 at 0.68 Hz for accelerations 0, 2*, 4*, 8*10-3 and 1*, 2*%104 g
(Figure 6.10). The spatial frequency components are visible. The filtered bridge images
for the same accelerations were subjected to FFT analysis as well (Figures 6.11, 6.12).
These show the presence of higher-order spatial modes in a bridge oscillated at the

fundamental resonant frequency.

1.3.3 Force balance data

Paths in A-V space were traced by keeping Vg constant and changing A (chapter 7,
Figure 3.14). This was done at various values of Bo. The static force exerted by the
bridge on the lower disk was measured and graphed as force versus slenderness (Figure
7.4). For low slenderness bridges, the force curve exhibits a maximum before breaking.
At larger slenderness, the force curve does not exhibit a maximum. The force was
calculated by numerically solving the equation for the bridge profile (Figures 7.5, 7.7). The

experimental paths are given below in Table 1.1:



Bo

0.015

0.009

0.016

0.0012

0.056

-0.063

Table 1.1. A list of initial and final bridge configurations.

A

0.314
0.712
1.30
1.70
2.89
0.338
0.219
0.134
1.555
2.4097
2.845
2.561
2.50
1.687
2.232
2.403
0.50
0.677
0.928
1.067
1.398
1.451
1.815
0.103
0.252
0.707
1.955

Vi

2.02
1.786
2.45
4.11
5.94
1.88
1.16
0.946
1.622
1.885
2.702
4.083
4.52
2.89
4.458
5.897
1.004
1.367
1.448
2.056
2.173
2.676
3.72
2.05
1.505
1.732
2.506

Ag

0.966
1.804
3.02

3.40

441

1.27

0.577
0.224
2423
2912
3.420
3.440
3.445
2.888
3.984
3.984
0.694
1.268
1.576
2.168
2452
2.525
2.518
0.211
0.431
1.18

2.835

Vs

0.658
0.705
1.05

2.05

3.89

0.523
0.441
0.568
1.00

1.559
2.316
3.039
3.28

1.689
2.497
3.557
0.723
0.730
0.855
1.011
1.238
1.537
2.549
1.00

0.880
1.038
1.728
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The lower stability limit was approached, but not the upper stability limit because

the bridge would slip over the edge of the force balance disk.



Chapter 2

THEORETICAL DEVELOPMENT

In this chapter the theoretical basis for the liquid bridge research described in this
dissertation is presented. First, a short history of the problem of Plateau will be presented.
Next, without proof, the governing equations for liquid bridge statics and dynamics are

presented, as well as a short description of typical solution methods.

1. Plateau’s Problem

The problem of Plateau is to prove the existence of a minimal surface bounded by a
given contour I'. This was first suggested by Plateau in 1863 [248]. The complete
solution to this problem remains unsolved. Of primary difficulty in the solution is the fact
that this problem is represented by a system of non-linear differential equations with the
additional non-linear constraint that the area of the surface is minimal. The problem was
first linearized by a reparameterization and a method was developed to solve the linear
problem in the most general form based on ideas of Reimann, Weierstrass and Schwarz
[249]. The first proof of existence given the most general type of contour, an arbitrary
Jordan curve I in n-dimensional Euclidean space En, was presented by Douglas [250] and
simultaneously by Rad6 [251]. The Jordan curve theorem states that if T is a simple
closed curve in K2 then R2\ T has exactly two components, a bounded component (the

inside) and an unbounded component (the outside), each with I"as a boundary. Douglas’s

34
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work is in a sense more general that the original problem of Plateau. Douglas considered a

minimal surface bounded by k Jordan curves and which additionally has a prescribed
topological structure, e.g. orientable or non-orientable, one-sided or two-sided, and to have
a prescribed genus. The existence theorem of Douglas reads: let I" be an arbitrary Jordan
curve in E3. Then there exists a regular, simply-connected minimal surface bounded by r.
Douglas accomplished this task by departing from the classical variational problem into a
different method not using derivatives. The problem of Plateau was solved in the classical
variational method by Courant [252], who claimed that his method yields solutions not
available by the method of Douglas. Plateau’s problem continues to be an active area of
mathematical research [253-261]. Recently answered is whether the surface can exist
without self-intersections. It should be stated that the original problem of Plateau, the
existence of a regular, simply-connected minimal surface in E" bounded by an arbitrary
Jordan curve T, is as of yet still unsolved [253]. In general, the surface is not a unique
solution. Also unsolved is the related question of whether solutions to the problem are
stable to perturbations.

The liquid bridge problem is a subset of the original problem of Plateau. The liquid
bridge problem requires the existence of a minimal surface with a constrained volume and

fixed boundaries, in the case of contact line anchoring.

2, Governing equations for liquid bridge equilibria and dynamics

The governing equations will be presented without proof. For more detailed
derivations, please refer to the appropriate reference or appendix. The general inviscid
equations, following [62, 68, 118] are first discussed. The equation for the static interface
is defined as F =r - f(8,z) = 0 where f is the deviation of the interface from a cylinder of
radius r. The shape of the interface is defined by the pressure jump across the interface

Ap —- pln - poul:
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VF
Ap=2y]=V.—-2 2.1
p==2Y IVE] Y (2.1)

which is written explicitly as:

F(1+F2)(Fog — F) + FF (F2 + F§) - 2Fp(Fq + FF,Fyq)

2.2)
[F2(1 +F2)+ pg]”

Ap=12y

where subscripts indicate partial derivatives with respect to the subscripted variable. See
Appendix E for a detailed derivation of Equation 2.2.

For calculating the shapes of axisymmetric bridges, a common method
used is the “shooting” method of numerical solution. The results of these calculations are
used for determinations of stability limits (Chapters 4 and 5) and for force calculations (see
Chapter 7). When using the shooting method, the interface is reparameterized in terms of
r(s) and z(s) where s in the arclength as measured from a support surface. All quantities
are made dimensionless with the parameter L, = m In the shooting method,
boundary conditions at s =0 and s = s¢ are replaced by conditions only at s =0. r(s) and

z(s) are functions of A, V and Bo. Numerically integrating the following equations:

r’(s) =-z'(s)B’(s) (2.3)
z”(s) = 1r'(s)p’(s)

with the following boundary conditions:
r(0)=rp (2.4)

r'(0) = cos(B1)
z(0)=0
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2’(0) = sin(B1)

where primes indicate a derivative with respect to arclength, and [ = 3(s) is the angle
between the tangent to the shape and the horizontal, provides solutions. Equation 2.3 can

be derived by noting that r’ =cos B and z’ =sin B. P’(s) can be calculated from:
Ap  Z/(s)
Ap-gl-y  1(s)

, where € indicates the direction of the effective gravity:

B’(s) =ez(s) +
\/

£ = -sign(Ap-g). The volume preservation constraint is:

j;f z’(s)r2 (s)ds (2.5)
LR?

V=

An axisymmetric equilibrium configuration of a liquid bridge is stable only if it is
stable with respect to both axisymmetric perturbations (the normal to equilibrium surface
component N of such perturbation is @9 (s)) and the most dangerous nonaxisymmetric
perturbations. The latter correspond to the first harmonic in the polar angle 6 and have the
form N = @(s) cos 8. We use the method described in [136] to study the stability to
perturbations satisfying fixed contact line and constant volume perturbations. An
equilibrium bridge is stable to axisymmetric (to nonaxisymmetric) perturbations if the

function D(s) (function @, (s)),

D(s) = <901(S)J‘;f Qg (s)ds — (Poz(S)jgf g (s)ds (2.6)

does not vanish on the interval O < s < s¢. Here the functions @i (s), ®o2 () and @ (s) are

the solutions of the following initial-value problem:

2
Lo E(p”+—r;cp’+[br’+2prz'+—Z-T+B’2](p 2.7)
r r
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If there is at least one point s, 0 < s < s, at which D(s) or @(s) vanishes (in practice,

changes sign), then the bridge is unstable.

We define the point s = s* as the first point on the solution of Equation (2.6) and
(2.7) at which one of the functions D(s) or @(s) vanishes. For a neutrally stable surface,
axisymmetric (nonaxisymmetric) perturbations are critical when D(s) (@1(s)) first

vanishes at s = s*. To find the profile of a neutrally stable surface with a prescribed value
Ap
Viap-g- v

r(s*) = rg and constant volume are satisfied within the required accuracy. For the

of B and a chosen rp, we vary the parameter g = until the conditions of

construction of a general boundary of the stability region, this procedure is performed for a
sequence of possible values of the angle 3.

Now examine the governing equations for viscous oscillations of liquid bridges,
following [15] are presented. The dimensionless conervation of mass and momentum

equations are: (see appendix B for a detailed derivation)

V-v=0 (2.8)
Dv _p_ lypslvwiy
Dt p Re

with the following boundary conditions:

Tangential stress vanishes: toT=t,T=0,r=1(8,z1) (2.9)
Balance of normal stress: T-n/Re +2In =0, r = f(8,z,1)
Kinematic boundary condition: n- -(—; =n-v

Where Re is the Reynolds number pvR/t, n is the surface normal, T is the surface
traction (see appendix B) and tg, t; are the unit surface tangents. The kinematic boundary

condition equates the velocity of the surface to the fluid flow velocity. When axisymmetric
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perturbations are considered, the radial velocity and its derivative with respect to er are zero

at the centerline, and the azimuthal velocity is zero everywhere. Therefore, given a
divergence-free velocity field, the axial velocity must be zero at the centerline as well. For
nonaxisymmetric disturbances, the axial velocity at the centerline must be independant of
0, which is satisfied only if it is equal to zero. The condition of the radial and azimuthal

velocities depends on the wavenumber m (from [15]):

m=1: vi+vg=v,=0,1r=0 (2.10)

m = 2: vi=vg=v,=0,r=0.

In addition, the contact line remains fixed, and all velocity components are periodic in 0:

fzt)y=1,z=%A 2.11)
f(0,z,t) = f(6+2m,z,1)

as well as the usual volume constraint.
In order to calculate the eigenmodes and eigenfrequencies, the equations are
linearized around a steady state. Small volume-preserving perturbations of amplitude € are

made for all dependent variables:

v=vb+€vp,p=pb+€pp,f=fb+€fp,T=Tb+sTp. (2.12)

The base states are calculated for a static case. Finally, the usual decompositions are made

for the variables:
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v p(r,8,2,) = ﬁr(r,z)e'mee'm (2.13)
Vo,p(1,68,2,t) = ﬁe(r,z)eimee'ot

Vo p(1,8,2,0)= i, (r,z)e™MPe Ot

im6 e-ot

pp(r,B,z,t) =p(r,z)e

f,(r,8,2,t) = f(r,z)eimOe 0t

where m is the azimuthal wavenumber, and o is the (complex) eigenvalue.



Chapter 3

EXPERIMENTAL APPROACH

In this chapter the experimental apparatus, physical measurements and calibrations,
any general experimental techniques that were used for the different experiments will be

discussed in depth. Finally, the error sources in the system will be presented.

3.1. Experimental Apparatus

3.1.1 Plateau tank apparatus

The experimental apparatus consists of a neutrally buoyant, or Plateau tank (see
Figure 3.1) containing 3.8x104 cm3 of bath liquid. The tank is a rectangular glass-walled
box with a machined aluminum base-plate. The base-plate has a 5 cm diameter hole for
the lower support mechanism and a 0.95 c¢m hole for a drainage tube. The apparatus
support structure (not shown) consists of 5 cm diameter cast iron pipes filled with sand to
reduce vibration. The support structure is securely anchored to a 1.22 x 2.44 m optical
bench fitted with vibration-damping legs. There are two sets of motors. The lower set are
attached to a large aluminum plate that can be adjusted to precisely align the upper and
lower support disks. The upper disks are rigidly attached to the support structure. All
metal has been painted flat black to reduce reflective interference with the optical systems.

The top of the tank is covered with a Styrofoam® slab to reduce evaporative loss of the

41
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bath liquid. Bridge supports are threaded onto upper and lower support rods. A wide

variety of sharp-edged disk supports of various materials, sizes and receding angles were
machined along with spherical caps of various materials, wire rings, and disks mounted on
cantilever arms. The support structures are easy to fabricate, and new supports are
machined as needed for experiments. For most experiments 1 cm stainless steel sharp-
edged disk supports are used, although a cantilever arm was used for force measurements

and spherical caps used to study moving contact lines.
1
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Fig. 3.1. Plateau Tank Apparatus: (1) upper vertical displacement motor V1 (2) upper
rotational motor (3) upper lateral displacement motor L1 (4) oil injection line (5) upper
spindle (6) upper feed disk (7) lower feed disk (8) slip-ring gasket (9) lower rotational
motor (10) lower lateral displacement motor L2 (11) lower vertical displacement motor
V2 (12) cooling coils (13) bath circulator (14) heating coil
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3.1.2 Temperature control

A small heater was used for increasing the bath temperature, and a copper coil
attached to a cold water source was used to lower the bath temperature. Temperature
measurements showed that the temperature of the bath could be held steady to 0.05 °C
over an 8 hour period, and 0.01 °C over a 30 minute period (see Figure 3.2). The
temperature was measured with a platinum resistance thermometer with a precision of
0.001 °C. Typical experiment times were 2 hours or less. A filtering pump was used to
both stir the bath and to remove any foreign material in the bath solution. All three (pump,
heater and cooling coils) were turned off during experiments. A circulator was not used as
it was impractical and unnecessary for the large volume of bath liquid. The temperature
was selected to be near the ambient temperature of the room, approximately 22°C, and
schlieren images showed that bath temperature nonuniformity is negligible. If the
temperature drifted out of the allowed range (AT = 0.01°C) during an experiment, the
experiment was stopped and the bath brought to the correct temperature before resuming
the experiment. A change in temperature of AT = 0.01°C corresponds to a Bond number
change of ABo = 1.5x104.

The stepper motors draw large amounts of electrical current, and correspondingly,
tend to generate large amounts of heat. The lower support rod is directly coupled to one of
the lower stepper motors, and heat generated by this motor will rapidly conduct up into the
bath. The other motors are not as well coupled to the bath, and do not greatly contribute to
the heat flux. The heat will cause the bath fluid in the vicinity of the support rod to expand,
generating both convective flow in the bath fluid centered around the liquid bridge, as well
as changing the overall temperature of the bath. Thus it is important to monitor the
generation of heat by the motors. The change in density of the bath can be easily visualized
with schlieren imaging. When schlieren fringes appear, the experiment must be stopped
and the motors allowed to cool down, a process that can take several hours. A circulation

fan or small blower placed near the lower motors would help alleviate this problem.
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/

Figure 3.2. Time variation of bath temperature.
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3.1.3 Liquid bridge manipulation

The liquid bridge was formed and manipulated using computer control. The
system involves a PC (133 MHz), which communicates with indexers for the motors
(Compumotor®, series AT 6400). The indexers communicate with the AC power supply
encoders for the motors, which drive linear tables (Parker® systems, Daedal division). Our
system has 2 AT6400 cards, one driving 4 motors and the other driving 2 motors from a
separate indexer. The execution time between consecutive commands is approximately 2
milliseconds according to the manufacturer. The combination of the motor resolution and
the screw thread in the linear tables provides a resolution of 125000 steps/inch. In addition,
there is a joystick interface which can control up to 4 motors simultaneously. The stepper
motors and linear tables were found to have completely repeatable motion, i.e. no
measurable backlash. Liquid bridges are created by manual injection of silicone fluid
(nominally) with a microsyringe (Hamilton Gastight® series, 50ul and 500 pl) while the
stepper motors separate the support disks. Typical bridge volumes are of the order 2 cm3.
Past attempts to automate the syringe failed for various reasons. A glass syringe offers
precision, but small angular misalignments between the barrel and plunger caused sticking
and the potential for breakage. A plastic syringe could accommodate misalignment, but the
rubber-tipped plunger initially deforms instead of travels, resulting in inaccurate volume
injection.

Quasi-sinusoidal motion for a fixed period and acceleration is performed by
suitable adjustment of velocity rate as well as distance traveled (see Figure 3.15). The
particular frequency and amplitude of vibration chosen depend on the particular experiment
being performed. Either upper or lower or both support disks may oscillate axially or

laterally, in or out of phase, depending on the experiment.
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3.2. Coherent Fourier Imaging Optical System

A coherent imaging optical system that operates on the Fourier transform of the
image of a liquid bridge silhouette has been developed. By blocking the zero frequency, or
dc component of the optical scene, only the high-frequency components corresponding to
edges are passed through the system. This approach was used because one of our
objectives was to investigate the importance of contact line and angle dynamics on the
characteristics of dynamic liquid bridges. Optical techniques allow a higher measurement
precision. In many cases, certain real-time measurements needed to be automated. By
performing some of the image processing optically, the need for expensive and specialized
image processing hardware is eliminated. Finally, in experiments involving liquid bridges
undergoing periodic time-dependent deformations, vibrational mode information can be
directly obtained from the transform plane.

Because the liquid bridge is elevated from the surface of the optical bench by at
least 20 cm, the optics are mounted on elevated optical platforms which are rigidly bolted
to the optical bench. This increases the stability of the optical components. The optics are
mounted on Data Optics optical rails and 3-axis carriages. The bridge is viewed in 2
orthogonal directions (Figure 3.3). In each case, the bridge is viewed by a CCD camera
(Burle®, model TC351A) equipped with a 18-105 mm zoom lens. In one view, a HeNe
laser is used as the light source, and in the other, an incoherent white light source with a
diffuser is used as the light source. The coherent view consists of the laser (15 mW
Spectraphysics Stabilite®) and a 8 micron pinhole in a spatial filter. The light is collimated
before passing through the Plateau tank. The light is then subjected to high pass frequency
filtering [267,268] to pass only edge information from the bridge silhouette. Light
refracted by the liquid bridge is allowed to escape and does not substantially interfere with
the image. Magnification is supplied by a plano-convex lens and a telephoto lens system

attached to the CCD.
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Figure 3.3. Optical layout (top view)

The images from the cameras are digitized by a frame grabber (Coreco TCX). The
frame grabber can capture up to 1024 x 1024 x 8 bits for each frame. The images are
currently stored and manually processed using a computer program (o measure relevant
parameters. Upgrading the data acquisition system will allow for real-time automatic data
acquisition and image processing. The magnifications range from 10x to 700x for the
coherent view, and 4x to 11x for the incoherent view.

In order to fully exploit the capabilities of the Plateau tank, it is desirable to design
an optical system that can resolve features at least on the order of tens of microns. The
optical system chosen is similar to a so-called “4-f system,” with a few minor differences.
In a 4-f system, the object plane is located a focal length in front of a convex lens, which
produces the Fourier transform of the object a focal length behind the lens. T‘his Fourier

plane is located a focal length in front of a second convex lens, and it retransforms the
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transform plane, producing a filtered image, a focal length behind the lens. This system,
while conceptually simple, was not sufficient to meet current needs. Spherical aberration is
large unless special lenses are used. Because all focal lengths are equal, there is no
magpnification of either the transform plane or the final image. The layout of the 4-f system
has been altered to reduce these problems. By splitting each convex lens into 2 plano-
convex lenses, spherical aberration is suppressed. By making the front and back focal
lengths different, the transform plane can be magnified. The second half of the optical
system was used to magnify the object plane. Resolution is ultimately limited by
aberrations present in the Plateau tank itself. Fortunately, aberrations can be reduced to an
acceptable level without expensive modification of the tank walls (e.g. using optically flat

windows).

3.2.1 Alignment procedure

The complete optical system contains approximately 14 surfaces, including the two
walls of the glass tank that deform due to hydrostatic pressure. In order to align so many
surfaces it is necessary to eliminate all mechanical reference surfaces, i.e. optical mounts.
The first step is to define the optical axis. The optical axis was true to +0.5 mm at 5 meters
(=1 0.012 seconds). The next step centers the mirrors to the optical axis.

Once the mirrors have been centered, the optical elements can be aligned. The first
object to be aligned is the Plateau tank itself. The tank is the source of most of the
aberrations due to the fact that it is not a precision piece of optical equipment. However,
with care, the aberrations can be reduced to an acceptable level. Alignment of the tank is
achieved by observing both the portions of the laser beam reflected from each surface and
the deviations of the transmitted beam. By adjusting the tank, the reflections are moved
until they closely coincide with the incident beam. Adjustment is achieved by (1) gross
placement of the tank, including rotation perpendicular to the optical axis, (2) “shimming”

the tank to adjust rotation along the optical axis, and (3) adjusting the walls of the tank to
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account for non-parallel sides. A c-clamp was constructed to compensate for the sag
caused by the hydrostatic pressure of the bath liquid on the walls of the tank.

When the tank is properly aligned, the optical elements are placed in the beam line,
one at a time, and adjusted until reflections from the surfaces are coincident with the
incident beam. Primary adjustments include translation in the X-Y plane (perpendicular to
the optical axis), rotation and tilt. Usually, a small “shim” is placed to hold the desired tilt,
either of the optical element, or of the entire mount. By bringing the reflections and
refractions of the laser into coincidence, error due to misalignment is minimized. After the

system has been aligned, the optical elements are locked in place.

. 3 i}

Fmm

Figure 3.4. Focal spot at Fourier plane before alignment (no bridge present). Scale 1s
approximate.

An image of the Fourier plane before aligning the tank and without a liquid bridge
present is shown in Figure 3.4. This is an aberrated image of the pinhole. There is clearly

some residual astigmatism and coma present. To locate the source of the aberrations, we



50

constructed a Michaelson-Morley interferometer to individually test each optical element.
By placing either a lens or an optical flat in one of the arms, while leaving the other arm
empty, the resulting interference fringes show how many waves of different aberrations are
present in the optical element. A reflective ball, the center located in the focal plane of the
optical element, replaces a flat mirror when a lens is in an optical path. This method of lens
testing is called autoreflection, as opposed to retroreflection, which places a reflective
surface at the focal plane. Autoreflection is preferred because non-rotationally symmetric
errors will be preserved in the wavefront. Each lens has been quantitatively labeled and
none show signs of coma or astigmatism, which are the primary non-symmetric errors.
Figure 3.5 is an example of the interferogram obtained. Spherical aberration will always be
present, but by carefully choosing two complementary lenses, the spherical aberration can
be suppressed. Therefore, the primary source of aberrations is astigmatic and comatic
curvature of the glass walls of the tank due to the hydrostatic pressure of the bath liquid.
An image of the wavefront with the system elements properly aligned is shown in Figure
3.6. The astigmatism and coma have been greatly reduced. An image of the Fourier plane
after all the elements have been aligned is shown in Figure 3.7. A typical image of the
bridge supports is shown below in Figure 3.8. Features on the order of several tens of
microns can be resolved. The edge of the support structures is clearly delineated by the
dark stripe running through the bright region. This stripe is actually composed of very high

spatial frequency alternating light and dark strips which the system cannot resolve.



Figure 3.5. Interferogram of a lens Figure 3.6. Shear interferogram of
in the optical system wavefront after alignment

Figure 3.7. Focal spot at Fourier plane after alignment (no bridge present). Scale is
approximate.



Figure 3.8. Effect of frequency filtering (no bridge present)

3.3. Materials

Table 1: materials properties. s.g. = specific gravity at 25°C, n = index of refraction at
25°C (sodium line, 589.3 nm), Y = surface tension (dyn/cm), € = coefficient of expansion
(cc/cc/°C). Sources: !Dow Corning, 23M, 3CRC Handbook of Chemistry and Physics.

*yof 0.1 g FC-171/100 g distilled water. Note: CRC data at 20°C.

Material s.g. n Y €
Scs silicone fluid! 0.913 1.3960 19.7 0.00105
100 cs silicone fluid! 0.965 1.4030 | 20.6 0.00096
Fluorad (FC-171)2 1.4 — 20" —
Fluorad (FC-721)2 1.5 1.36 11 —
Fluorad (FC-723)2 1.7 — 11 -
Methanol3 0.7931 1.3290 | 22.61 —
Water3 0.99823 | 1.33335 | 72.75 1 0.00483
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The materials used for the liquid bridge and the surrounding bath needed to satisfy

the several constraints. Most importantly, the two liquids must be immiscible. In order to
avoid issues involving hazardous materials, organic liquids such as benzene and chemical
solvents such as xylene were avoided. For practical reasons we chose water and methyl
alcohol as one fluid phase (see [51] for some other suggested bath liquids]). Other liquid
bridge experiments have used Dow Corning series 200 fluids, a series of hydrophobic
polydimethylsiloxanes available in various viscosities. These fluids have several
advantages. They are, non toxic, and stable. We found, however, that silicone fluid in
contact with air and a water-methanol solution for extended periods of time (for example
oil floating on the surface of the bath) will polymerize. Because the interfacial energy is a
difficult physical quantity to measure accurately, it is an advantage to have a value that does
not appreciably change from one experiment to another. Because the silicone fluids readily
adhere to any surface they come in contact with, the silicone fluid was used as the bridge
fluid, rather than the surrounding bath fluid. This way the silicone is contained, and in the
case of the bridge breaking, the drops of oil will adhere to the glass walls of the tank and
not interfere with subsequent experiments.

The only decision left to resolve was the viscosity of the silicone oil. Because the
water-methanol solution has a viscosity close to 1 cs, a silicone fluid with a viscosity of
100 cs, and another with a viscosity of 5 cs was selected. In this way regimes where the
relative viscosity is large or small [62] can be investigated.

Although the silicone oil came provided with a materials data sheet from Dow
Corning, much time was spent studying the behavior of the silicone fluid in contact with
various materials. Because control over how the oil wet the support disks was important,
disks were machined out of many different plastics, as well as aluminum (T6061), free-
machining brass and stainless steel (303A). The long term behavior of the silicone oil in
contact with polymethylmethacrylate (PMMA), polycarbonate, nylon 6/6, nylon 6/12,
polytetraflouroethylene (Teflon), high-density polyethylene, polystyrene, polyurethane,



54

polyvinylchloride and Delrin was investigated. In all cases, the surface of the plastic in
contact with the oil degraded over time until the oil no longer wet the surface in the
presence of the water-methanol solution. The time for this to occur ranged from hours
(polycarbonate) to weeks (Teflon). Concerning the metals, the brass turned the water-
methanol solution cloudy in a day, and the aluminum had the tendency to polymerize the
oil, transforming it into a gel-like substance in the presence of the water and methanol.
Although the oil exhibited wetting problems when in contact with the stainless steel after an
extended period of time (several months), the fact that the steel could be machined to a
much sharper edge than the plastics led to our decision to select stainless steel as the
material for the support disks. The top surface of the steel can be coated with a surfactant
(FC-171) and the underside with an anti-spread fluid (FC-721 or FC-723) to enhance the
contact line pinning. Alternatively, by gently abrading the surface of the support disk, the
oil is exposed to a fresh surface and again preferentially wets the surface of the support

disk.

3.4. Physical measurements/ calibrations
3.4.1 Calibration of a density hydrometer at various temperatures

Accurate and precise knowledge of the bath and bridge density is crucial if we are
to control the Bond number at low magnitude (Bo < 0.1). Therefore, an experiment was
undertaken to calibrate our density hydrometer over a range of temperatures. Although a
pycnometer would provide much higher accuracy and precision, it is only calibrated for
one specific temperature. Silicone oil was used as a density standard, and the condition of
neutral buoyancy used to compare measured densities of the bath with independently
measured densities of the oil. Use of the hydrometer over a temperature range (20 "C -
30 °C) is the primary concern. The hydrometer was an Ertco® density hydrometer, 13”
long, with 0.0005 gradations. The rated accuracy is 2% at the standard temperature, but a

substantially greater accuracy over a large temperature range was required. To take a
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reading, the hydrometer was placed in a 500 ml graduated cylinder. A platinum resistance
thermometer was placed in the Plateau tank. Although the lower limit of resolution of the
thermometer is 0.001 °C, local temperature fluctuations forced a practical resolution of
0.01 °C.

The temperature dependence of the silicone fluid was measured independently
from the hydrometer, using the Archimedes method to weigh an aluminum block
submerged in the oil at various temperatures. This method gave the coefficient of
expansion for silicone oil as Ap/AT = -9.56x10-# g cm-3 K-! (see Figure 3.9). This result
is less than a 0.1% difference from the published result by Dow Corning®. The
Archimedes method was not used to calibrate the hydrometer directly because the
hydrometer was too large for the apparatus. The Plateau tank is kept to a given
temperature, within 0.01 °C, and the density of the bath is adjusted by adding either
deionized water or methanol until a pulled bridge of slenderness 3.12 is stable. The bridge
slenderness was chosen to be as close to the Rayleigh limit as practical. At this point, the
density of the bath is nearly equal to the density of the oil, and a density measurement of
the bath is taken and compared against the calculated density of the oil (see section 5.1 for
more detail). The bath mixture was mixed continuously, except when pulling a bridge.
Homogeneity was checked using schlieren coherent imaging. Any inhomogeneities in the
bath composition create inhomogeneities in the local index of refraction, and thus, create a
local lensing effect, which can easily be observed. The graduated cylinder was first filled
with bath liquid, then the liquid was expelled as waste to eliminate compositional
differences between the fluid in the bath and the fluid in the drain tube, or residual fluid in
the cylinder. The graduated cylinder was again filled, and a density measurement taken.
The ratio of calculated to measured density over a range of temperatures is shown in Figure
3.10. Within the precision of the hydrometer, the variation of temperature did not affect the

accuracy of the hydrometer. The data taken by comparing the measured density of the oil
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to the measured density of the bath is used to increase the accuracy of the hydrometer.

Consequently, the density of the bath is known to better than 0.1%.
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Figure 3.9. Temperature dependence of Figure 3.10. Ratio of measured
silicone oil density and calculated density

Because the conditions for neutral buoyancy require a density difference of exactly

zero, the time required to achieve exact neutral buoyancy is unacceptably long. In addition,

the limit of precision of the hydrometer places a lower limit on how close to neutral

buoyancy can actually be measured. Equal numbers of readings were taken with the oil

slightly lighter than and slightly heavier than the bath. In this case it was found that the

density difference was equal to the precision of the hydrometer. In order to ensure that the

temperature of the measured fluid stayed constant over the period of the experiment, the

temperature of the bath was kept close to the ambient temperature of the room. If many

schlieren fringes appeared when the solution was poured back into the bath, the trial was

repeated. This guaranteed that the temperature of the graduated cylinder did not

significantly affect the temperature of the bath portion being measured.

3.4.2 Evaporation rates of silicone oil and bath liquid
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Because the bath liquid contained a large fraction of alcohol, it was necessary to
determine if the evaporation rate was large enough to significantly alter the bath density
over the course of an experiment. We also wished to know if the silicone oil was volatile.
In addition, we desired to know if the silicone oil was partially miscible with the bath
liquid. To measure the evaporation rates of the various viscosity silicone oils, we merely
filled beakers with the fluids and periodically weighed them. We measured the mass, then
placed the sample in a vacuum, and weighed the sample again (see Figure 3.11). This
would tell us if any water had dissolved into the silicone oil, as the water and any other
volatile liquids would boil off under a vacuum. Only the lowest viscosity silicone fluid
(1 = 0.65) had any appreciable evaporation rate. The amount of dissolved water decreases

extremely rapidly with increasing viscosity, and the silicone fluid itself does not evaporate.
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Figure 3.11. Change in mass of sample over time. (0)- before applied vacuum, (o)- after
applied vacuum

For measuring the evaporation rate of the bath fluid, the fluid was brought to a
desired density, close to typical experimental values, and the tank left to sit overnight. The
next day, the amount of liquid necessary to bring the bath to the density it had been

previously was determined. It was found that it was necessary to cover the top of the tank.
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By covering the tank with Styrofoam®, covering the through holes with plastic sheeting,
and lowering the temperature of the bath, only 200-300 mil of methanol per day was
needed to re-adjust the density. This represents a fractional volume change of 7.5%10-3.
Thus, frequent density measurements during the course of an experiment were necessary

to ensure the composition of the bath remained within acceptable ranges.

3.4.3 Interfacial tension measurements

The importance of obtaining an accurate value for the interfacial energy as possible
cannot be overemphasized. The largest contribution to the error in Bond number arises
from the interfacial energy. In addition, because the interfacial energy is small (roughly 15
erg/cm?), even small values of 8y produce a large error. Because the interfacial energy
changes with composition (density) and temperature, it was necessary to obtain, in addition
to an accurate value of 7y at neutral buoyancy, the relationship between the interfacial energy
and the bath density (composition).

A variety of techniques are available for surface tension measurements which vary
in both accuracy and complexity [246]. There is no standard method for isopycnic liquids.
We selected those methods that require a minimum of apparatus while still providing
accurate values of the interfacial energy. Three methods involved the balance of
gravitational and interfacial energies. These methods are the drop weight method, the
pendant drop shape method, and a method utilizing the deflection of a cantilever arm in
response to the interfacial energy. A fourth method compared experimental values of
bridge stability to numerical computations of the stability limits of axisymmetric bridges
between unequal concentric disks to obtain 7y [265]

The drop weight method is perhaps the simplest method to carry out in a
laboratory. Tate’s law [266] is used: W = 2xryf, where f is a correction factor that
accounts for the fact that not all the drop will detach from the dropping tip. The correction

factor f is a function of tip radius divided by drop radius, or, since the drop volume is more
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conveniently measured, Vg!/3. In our case W, the weight of the drop, was ApVy.
Correction factors for mercury in air were given by Wilkinson and Aronson [197].

The pendant drop technique is slightly more complex, but still requires a minimum
of apparatus. In this case, a static hanging drop was photographed, and shape parameters
directly measured from the picture. Instead of numerically fitting the entire shape, we used
correction factors given by [197, 246]. In this case the surface tension is given by
v = Apg(de)?/H where d. is the equatorial diameter, and H is the correction factor, a
function of ds/d. (see Figure 1.5).

The force balance method is the only method of the three that can directly measure
the value of interfacial energy. A detailed explanation of the force balance apparatus is in
chapter 7. By assuming the cantilever arm acts as a weak spring, measuring the deflection
of the arm due to the presence of the bridge serves to measure the interfacial energy (see
Figure 7.1).

The fourth method relies upon numerical calculations of the stability limits of liquid
bridges held between unequal coaxial circular disks (see Chapter 5). On the lower stability
boundary there is a cusp point. The value of A, A, at the cusp point depends sensitively
upon Bo. For A > A, the bridge will neck down near the upper support disk. If A <A,
the bridge will neck down near the lower disk (Figure 3.12). By adjusting the bath density
until the measured value of A, matches the numerically calculated value for a given Bo.

The value for the interfacial energy can be then be found from the Bond number.



60

Figure 3.12. Difference in necking behavior. (a) A < A¢, (b) A>Ac.

3.4.3.1 Procedure
343.1.1 Drop weight

The same procedure was used when the silicone was heavier than or lighter than the
water-methanol solution. First, a 100g solution of methanol and water was prepared by
weight percent utilizing an electronic scale accurate to 0.1 mg, producing a solution accurate
to 0.001%. Later, the weight percent would be converted to mol fraction, as well as a
density [g/cm3]. The receptacle, a rectangular cuvette, was first thoroughly washed with
Tergazime® detergent, followed by purified water, and lastly, copious amounts of acetone.
The cuvette was allowed to dry, then filled and covered with a cap which contained a small
hole through which the needle could be inserted. The evaporation rate of the solution was
measured over a 3 minute interval. The dropping tip was a 20 gauge needle (diameter
0.09 cm) with the end cut square to the sides. Hole integrity was ensured by inserting a

wire into the hole at the time of cutting, to prevent distortion. Injection was achieved
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manually via a syringe attached to a screw drive. By turning a long threaded rod, the
syringe would inject fluid through plastic tubing into the needle. The syringe, tubing, and
needle were connected with Luer Lock®. The needle was anchored in place by a clamp,
which was attached to a sturdy base to eliminate unwanted vibration or movement. With
careful manipulation, dropping times of up to 5 minutes could be achieved, ensuring
maximum drop weight. Although no temperature control device was used, ambient
temperature variation was small enough (approx. 0.5 °C) to ensure that the interfacial
tension did not vary appreciably over the time of the experiment. The dropping tip was
aligned by eye, to be near vertical. The needle was lowered into the solution, several drops
were formed and weighed. The time of the procedure was noted, and evaporation rates
were accounted for in the final weight. This was repeated several times to obtain a
statistical average. Depending on the relative density between the silicone fluid and the
methanol-water solution, either silicone fluid or solution was injected into the container. If
the methanol-water solution was to be injected, The injecting syringe and tubing were
emptied, the apparatus filled with a new solution which was then expelled as waste, and

more solution introduced into the injection system.

343.1.2 Pendant drop

The photographs were taken using a standard 35 mm manual camera with an
85mm f#/1.2 lens. Image distortion was checked by imaging a grid, and was found to be
negligible over the field of view occupied by the drop. Enlargements were done “in-
house,” with end magnifications on the order of 40x. Shape parameters were measured,

and the interfacial tension calculated.

343.13 Cantilever arm
We examined the forces exerted by right circular cylindrical bridges with different

slenderness, and measured the displacement of the lower disk from its initial position.
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Silicone oil was manually injected, and the upper feed disk moved until the bridge was a
right circular cylinder. The slenderness was measured directly from the viewing monitor
with a set of calipers, and the displacement of the lower disk measured directly from the
chart recorder. For right circular cylinders, after accounting for buoyancy, the total force on
the lower disk reduces to a linear dependence upon the radius of the disk and the interfacial
energy. Because the radius of the disk is a constant, the displacement of the lower disk is
proportional to the interfacial energy only. This also allows us to measure the value of
interfacial tension at very low Bond numbers, which otherwise must be measured by more
involved techniques such as the Wilhelmy plate method, or optical methods based of

eigenfrequency excitations [246].

343.14 Stability limits method

The density of the bath was adjusted until the experimental value of A
corresponded with the known theoretical value. When the proper slenderness was reached,
the density was measured with the calibrated hydrometer, and the value of interfacial
energy was adjusted until the calculated Bond number was equal to +0.100. For Bo = -
0.100, A slightly different method was used. Because there is no Ac, an slenderness near
the maximum stable slenderness was used to adjust the density of the bath. Care was
taken to be in a region where the value dV/dA was not large, as small errors in slenderness

would then cause large errors in minimum stable volume.
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3.4.3.2 Results
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Figure 3.13. Measurements of the interfacial energy between silicone oil and a water-
methanol bath. (a) 100 cs oil, hanging drop and drop weight methods. (b) 5 cs oil,
hanging drop and drop weight methods. (c) 100 cs oil, force balance method. (d) 5 cs oil,
liquid bridge stability method.

Results of the measurements at various concentrations of methanol are shown in
Figure. 3.13 a-d. Figure 3.13 a and b shows the measured value of the interfacial energy

between 100 cs and 5 cs silicone fluid and various concentrations of methanol in water
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using the drop weight and hanging drop methods. Note the apparent divergence centered
around Ap =0. Most data points were taken using only the drop weight method.
However, pendant drops were measured at various concentrations (0%, 50%, and 100%
water), and the values matched those given by the drop weight methods, agreeing to within
7%. To obtain a value for the interfacial energy, a linear interpolation was used through
neutral buoyancy and the affected points ignored. This gives a value of y= 14.5%0.5
dyn/cm at Bo = 0, T = 22.0 °C for the 5 cs oil and 25.6 £ 0.5 dyn/cm at neutral buoyancy
for the 100 cs oil.

Note that these methods fail near the neutral buoyancy point. This is because these
methods use a balance of gravitational and interfacial energies. This is not a physical effect.
Approaching neutral buoyancy, the drop size increases exponentially, with a corresponding
increase in dropping times. The extreme points, those closest to neutral buoyancy,
correspond to drop volumes on the order of 10 cm3.

Figure 3.13 c shows data taken for 100 cs fluid using the cantilever arm method.
Note that the data trends to an asymptotic value as the slenderness increases. This is
because small errors in bridge shape at small slenderness produce large changes in the
pressure as the radii of curvature are small. This method produces an interfacial energy of
2140.5 dyn/cm (see chapter 7 for a detailed error analysis).

Figure 3.13 d shows data taken for 5 cs fluid using the method of bridge stability.
Again, the data diverges around the neutral buoyancy point. This method produces an

interfacial energy of 14.5 0.5 dyn/cm

3.5. General experimental techniques

There are three basic experimental procedures that were used for all of the
experiments performed, with the exception of the force balance, which will be discussed in
chapter 7. The first step in every experiment is to create a desired Bond number. The

second is to create a bridge with a desired slenderness and volume. Finally, methods used
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to detect when the bridge crosses a static stability limit will be discussed, as well as

methods used to oscillate the supports disks for dynamical experiments.

3.5.1 Bond number control

There were different procedures employed for creating a specific non-zero Bo, and
for creating a Bo as close to zero as possible. In order to create a given non-zero value for
Bo, all that needed to be done was to adjust the density and/or temperature of the bath until
it reached a suitable value. The values for disk radius and gravitational acceleration were
constant. Previous measurements were made of the temperature dependence of the density
of the silicone oil, calibration of the hydrometer, and the dependence of the interfacial
energy upon composition of the bath. A Mathcad® routine was used to calculate the Bond
number given a measured density and temperature of the bath, using all of the correction
factors. The density was adjusted until the desired value of Bo was produced. In general,
the temperature was only adjusted if it was much different from the ambient room
temperature. However, adding different liquid to the bath would slightly change the
temperature, so it was necessary to keep the temperature at a constant value during this
procedure. After the desired (measured) density was determined, methanol and/or water
were added until the density as measured by the calibrated hydrometer was correct. This
method works very well for large values of Bo, Bo > 0.01. Itis helpful to realize that if the
bath solution were removed, leaving the disks in air, Bo = 13.

If we desired to create a Bo as close to zero as possible, it was not possible to do
this by simply measuring and adjusting the density of the bath. This is because due to
measurement error, the smallest directly measurable Ap is 0.00025, corresponding to a Bo
of 10-2. (see below). To create smaller values of Bo, we used the fact that a V = 1 bridge
of slenderness 7t is stable to axisymmetric perturbations only if Bo =0. This allows us to
be limited by the (much smaller) error of the stepper motors and a microsyringe, rather

than a hydrometer and interfacial energy measurements. However, the time necessary to
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create a density difference of exactly zero is unacceptably long. As a compromise, a V = 1
bridge of slenderness 3.12 was used to adjust the density difference. the density of the bath
was adjusted until the bridge was stable and nearly cylindrical. This places an upper limit
of Bo at 2.5%10-4. The fact that the bath volume was so large facilitates this procedure, as

density adjustments on the order of one part in 107 are possible.

3.5.2 Creating a bridge of known A, V

Once the bath was brought to the desired density and the temperature stabilized by
adjusting the heating element or cooling coils, a bridge of desired slenderness and volume
was created. A Mathcad® routine would determine the number of steps each upper and
lower support disk stepper motor would need to take, and the volume in milliliters was
calculated as well. The bath stirrer, heating coil and cooling coil were turned off. This
would occasionally cause the temperature to drift. The effect of a temperature change on
Bond number could be calculated with the Mathcad® routine. If the change in temperature
was small, a few hundrethds of a degree, the Bond number would not measurably change
given the error in density measurement. The computer controlled motors would output the
distance traveled (in steps), the velocity (in steps/s) and the acceleration, in steps/s2. This
information was displayed on the computer screen as part of an interface program. Each
motor was capable of independently moving a certain distance at a certain velocity and
acceleration. The choice of velocity is a trade-off between time taken to form a bridge and
fluid flow perturbations caused by the disks moving within a viscous bath liquid. To start,
the support disks were slightly separated from each other to ensure that oil was in fact
flowing out of the feed disk. This small separation was measured to be on average 0.002
cm. A V =1 bridge of slenderness 0.002 has a volume of 15 pl. Originally, oil was
injected by a motorized syringe as the support disks were separated, but it was found that
the deformation of the rubber tip of the plunger caused an incorrect amount of oil to be

injected. Therefore, injection was performed manually with a calibrated microsyringe.
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Once the bridge was created, other values of slenderness and volume could be created by
moving the support disks and/or injecting or withdrawing oil. The Mathcad routine would
calculate the new slenderness and volume given an input separation distance of the support
disks (in steps) and a volume of oil in microliters. Figure 3.14 shows a sample path that
was followed to create a bridge of an initial configuration (Aj, Vi) in a solid line, and the

dashed lines indicate possible paths to approach the stability limit (See chapter 4).

Figure 3.14. A sample path followed in A-V space. Thin solid line: Bo =0.1. Dashed
line: Bo=0.

3.5.3 Dynamical procedures

The main procedure involved a sinusoidal lateral or axial oscillation of the disk
supports. A computer program controlled the oscillation of the disks approximately
sinusoidally by adjusting the amplitude and velocity of the rate of travel to achieve a

constant acceleration at different frequencies.
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Figure 3.15. Schematic plot of motor motion. Top: velocity versus distance. Bottom:

Distance versus time.
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Figure 3.16. Plot of v against f for a fixed A.
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It was necessary to first calibrate the stepper motors. This is a 4-dimensional
problem: given a “frequency” f and an “acceleration” a as input, calculate the true
frequency v and true amplitude A. Given input values of f and a, travel distance in units of
steps and velocity in units of steps/s were calculated, d = ota/ f2, v = a/f. The scale factor o
is used to control the overall displacement range, and is held constant. The values of
distance and velocity passed to the indexers. The indexers would command the encoders
to move the motor a specified number of steps with a specified maximum velocity using
the default acceleration/deceleration. Schematic velocity versus distance and distance
versus time plots, for clarity, are shown in Figure 3.15. Calibration runs were performed
by keeping either the input acceleration fixed and varying f or by keeping f fixed and
varying a. Given a constant input acceleration, the relationship between f and v is shown
in Figure 3.16. Four different f’s were chosen, and the true frequency measured as the
acceleration varied (Figure 3.17 a-d). The frequency dependence of dv/dA was measured
as well (Figure 3.18). Lastly, the true acceleration was calculated for different input
accelerations as f was fixed (Figure 3.19). Three features stand out. First, given a constant
acceleration, ® tends to an asymptotic limit around v =2 Hz. A quadratic fit of the data
was used with the understanding that the fit does not apply at frequencies close to this limit.
Thus, we were limited to a study of the fundamental frequency, although a first harmonic
may be generated if the resonance occurs at a low enough frequency. The next feature is
that the frequency does depend upon the acceleration. This dependence is weak enough to
assume a linear dependence at small accelerations. We assumed the following form of the

true frequency and acceleration:

v=v(a,f)=mi(a)* v(f)+c (3.1
A=A(a,f)=my(v)*A(a)+cy
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Figure 3.18. Change in dv/dA versus v

which gives the following formulae for the true frequency and acceleration in terms of the

input frequency and acceleration:

v = (-4.742%103a + 1.488%10-3)[-2.509*10-3f2 + 1.369* 10-1f +5.554%10-2] (3.2)
A = (-1.2295%10-3v + 2.743*102)a + 3*10-4

These can be inverted to give an input set (f,a) to create a desired (v,A). Note that it is
more important to have accurate and precise values for v than for A for purposes of

measuring the eigenfrequency.
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Figure 3.19. Variation of A with aand v.

3.6. System error

Here an analysis of the systematic error present in our apparatus is presented.
Some of the sources of random error are discussed as well, and the magnitude estimated.
The error sources affect physical measurements/calibrations, Bond number calculations,

and static and dynamic parameters of liquid bridges.

3.6.1 Density
The calibration procedure produced a calibrated instrument accurate to
+0.00025 g/cm3, the precision of the instrument. This corresponds to 0p/p = 2.5 * 104 at

typical values of density.
3.6.2 Disk radius
The calipers used to measure the disk radius are precise to 0.02 mm. Therefore, for

1 cm radius disks, SR/R = 2*10-3.

3.6.3 Interfacial energy
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To check our measurement technique, the pendant drop and hanging drop methods
were performed on pure silicone fluid in air. Both methods agreed well with data provided
by Dow Corning. The pendant drop method tended to give a lower value of the surface
tension, while the drop weight method tended to give a slightly higher value. For silicone
in air, the hanging drop methods gives a surface tension value of 18.06 £ 0.54 dyn/cm for
different measurements of the same drop, and 17.17 + 0.39 dyn/cm for measurements of
different drops. The drop weight method gives 21.29 £ 0.33 dyn/cm for measurements of
different drops, and there is negligible error due to angular displacement. The needle tip
was cut square to within 2 degrees, as measured by enlarged photographs. The eccentricity
of the inner diameter of the needle was measured to be exactly zero, and the eccentricity of
the outer diameter of the needle was measured to be 0.011 + 0.007 (see Figure 3.20). Note
the outer perimeter of the needle is not exactly circular. Error as a result from drop-to-drop
variations is 2.28%, and error due to measurement of a single drop is 3%.

The values of ¥ measured in the Plateau tank were used instead of the hanging drop
and drop weight values as they were representative of the actual experimental environment.
For 5 cs oil, the measurement error corresponds to ¥ = 14.5 0.5 dyn/cm. For the 100 cs

oil, the measurement error corresponds to y = 25.6 £0.5 dyn/cm.
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(}.225 mum

Figure 3.20. Magnified image of dropping tip.

3.6.4 Errorin “g”

The accepted error for “g” is 0.5 cm/s2, which corresponds to dg/g = 5.4*104.

3.6.5 Bond number
The uncertainty of the Bond number is the most important to know. The error is
calculated with two independent methods. The first method uses the uncertainty in density,

(X} ]

disk radius, interfacial energy, and “g” to calculate the uncertainty in Bond number.

1/2

§§2= 6A_p 2+ % 2+(_26_R)2+(§_Y_j2 (33)
Bo Ap g R Y '
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This gives 8Bo/Bo = 3.45x10-2. The largest error is in interfacial energy, followed by

error in disk radius, then density, and uncertainty in “g” is last. Note that this error is in

many cases larger than typical experimental values of Bo. The importance of using the
method of Rayleigh length bridges becomes apparent.

The method of determining the error present in this case uses the relation between

maximum slenderness of a right circular cylindrical bridge as a function of Bond number

to calculate the error in Bo.

3 4/3
Apay =T 1-(5) Bo?/3 (3.4)

For Amax = 3.12, Bo = 2.4x10"4. To calculate the error in Bo with this method, we need

to calculate the error in A and V.

3.6.6 Errorin A,V

The stepper motors provide a 48750 steps/cm displacement. Thus, the primary
uncertainty in A is due to the error in disk radius and the error due to an initial disk
separation. The initial disk separation was measured to be, on average, 0.02 mm. The
stepper motors had repeatable motion as verified under high magnification. However, the
smallest repeatable distance we were able to resolve, under a combination of extremely
high magnification and a significant amount of post-processing with an image processing
program (Matrox Inspector®), was a distance produced by 10 steps, corresponding to an

error of 2.5%10-4 cm. The combined errors produce

5_/\___[(6L)2 +(6L)2 +(6TR)2T/2 (3.5)

L inital L motors
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which is equal to 8A/A = 1.72 *10-3 for A = 3.12. The uncertainty in oil injection depends
on which syringe was used. For the small (50 pl) syringe, the uncertainty is 0.5 pl, which
corresponds to 8V/V = 2.04*¥104 fora A =3.12, V = | bridge. For the larger (500 pl)
syringe, dV/V = 2.04*10'%. ljom Eq)uation 3.4, this corresponds to an error of

CORE &g

8Bo/Bo = 7x10-5. Thus, by forgoing measurement of the density, reliable Bond numbers

approaching zero can be created.

3.6.7 Optical aberrations

Figure 3.21. Magnified portion of a 1956 EIA resolution target. Approximate
magnification of 35x.

A complete measurement of the MTF of the optical system was not performed.
However, some rudimentary information can be extracted from the wavefront and from
two resolving power tests performed on an EIA resolution target 1956 (Figure 3.21) and

an electroformed sample from Metrigraphics® (Figure 3.22). The focal spot and
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wavefront indicate the presence of coma and astigmatism. At 1 A of defocus, the system
was able to resolve up to approximately 800 TV lines of the EIA target. The electroformed
sample from Metrigraphics® provided arrays of round holes, ranging in diameter from
0.254 mm to 0.00254 mm, and a 38.1 line per mm scale. The optical system was able to
clearly resolve an array of 0.0254 mm diameter holes as well as the linear scale. It should

be mentioned that the hole spacing is many times greater than the hole diameter.

Figure 3.22. Images of electroformed holes. Left, hole diameter d = 0.0508 mm. Right,
d = 0.0254 mm. The “missing hole” in the upper right corner is a hole of
d = 0.00254 mm, beyond the resolution of the system.

We can estimate system performance from the above information. The diffraction-

limited cutoff frequency for the transform lens is given in [267] by

=— 3.6
fe nd (3.6)

where 1 is the lens diameter, d is the focal length, and A is the wavelength. The cutoff

frequency is 133.79 cycles/mm. The first zero of the Hankel transform corresponding to a
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hole diameter of 0.0254 mm is at 48 cycles/mm, and the second zero is located at 87.8

cycles/mm.

3.6.8 Error in dynamic variables

There are two quantities that need to be assessed: the disk support motion and the
contact angle measurement.

To obtain the true information about disk support motion , it would be necessary to
place a small accelerometer on the disk supports. As an alternative, we examined the
output from the encoder, which may or may not directly correspond with the actual disk
support motion. The disk supports are assumed to be rigidly coupled to the linear tables.
A sample Fourier transform of encoder data is shown as an example in Figure 3.23.

Although there are some higher frequency components, the effect is negligible on the

experiments.
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Figure 3.23. FFT of encoder output data

Error in the frequency was assessed by comparing predicted true frequencies to
actual true frequencies. The timing circuit of the computer would output the amount of

time taken per one-half period. This was determined from communication between the
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motor and the encoder. The encoder would give a time interval between successive motor
stops. The FFT of encoder output indicates that this corresponds well to a measure of one-
half of a period. The predicted and measured frequencies corresponded exactly, within the
resolution of the timer. This comparison gives an upper bound of the frequency error at
+0.001 Hz, the resolution of the timer mechanism.

The contact angle measurements were performed many times to minimize the
amount of measurement error. By measuring the angle manually, with a protractor, the
error in contact angle 8¢/¢ = 6.25%10-3 for typical values of ¢. By measuring the angle
with an image processing program (Matrox Inspector®), the error can reduced to

80/¢ = 1.11%10°3.



Chapter 4

DETERMINATION OF THE STABILITY LIMITS OF LIQUID BRIDGES
HELD BETWEEN EQUAL COAXIAL SUPPORT DISKS

Axisymmetric bridges with pinned contact lines are perhaps the best studied subset
of the general class of liquid bridge problems (see [15, 24-29, 51-134, 173]). In this
chapter experiments that were performed using coaxial disks of equal radii (K = 1) will be
discussed, and in chapter 5 experiments involving coaxial disks of unequal radii (K # 1)
will be discussed.

The first series of experiments measured the static stability limits of axisymmetric
bridges held between coaxial disks of equal radii for various values of Bo. Then the
bifurcation that results as a weightless bridge crosses the maximum volume limit was
investigated in more detail. These experiments, and the experiments in the next chapter,

were performed to analyze the influence of support geometry on liquid bridge stability.

4.1. Introduction

One of the first experiments performed was a verification of the stability limits of
axisymmetric liquid bridges held between equal coaxial circular disks. These limits have
been most completely determined theoretically by Slobozhanin and Perales [118] for
axisymmetric, nonaxisymmetric, and contact line perturbations. There are two major

reasons why this experiment was chosen first. Firstly, verification of such a well-

80
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established theoretical study allowed the accuracy of the apparatus to be measured.
Secondly, this relatively simple experiment serves as a first step toward more complex
experiments, such as a determination of the eigenfrequencies of axisymmetric bridges (see
chapter 6). The theoretical foundations for the experimental work will be briefly reviewed.
Figure 1.4 shows a portion of the stability region for Bo = 0 (dashed line) and the
entire stability region for Bo =0.1 plotted in the A-V plane. A bridge lying on segment
OC of the stability limit is most susceptible to nonaxisymmetric perturbations of the bridge
shape. On the segment CD, the bridge is susceptible to axisymmetric perturbations of the
bridge shape, and on segment OD, the bridge will lose axisymmetric stability by contact
line depinning [118]. As Bo increases, the region of stability covers a smaller region of the
plane, but the regions are nested within each other, and there are no intersections between
curves of different Bo (Figure 4.1). Behavior of the bridge in a neighborhood of the point
C, the transition point from axisymmetric to nonaxisymmetric critical perturbations, and
the behavior of the bifurcation as a bridge crosses the maximum volume limit (segment

OC) are the topics studied here.
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Figure 4.1 Stability regions for different values of Bo (from [118]). The curve C shows
the locus of the transition points between axisymmetric breakage and nonaxisymmetric
deformation of a neutrally stable bridge.



Figure 4.2. Bifurcation diagram for weightless liquid bridges (from [265]). Stability
boundary for axisymmetric states (a) and detail (b). Inserts show typical bifurcation
diagrams. An exit from the stability region results in: breaking (across the boundary branch
CDEFn); continuous transition to stable nonaxisymmetric states (across the segments T1m
and T,BT3); discontinuous transition (across the segments T{AT? and T3C) .

The bifurcation of the solutions of the nonlinear equilibrium problem of a
weightless liquid bridge with a free surface pinned to the edges of two coaxial circular
disks of equal radii has been examined (see Figure 4.2). Recall that given a stable
axisymmetric configuration, small changes in either A or V will in general provide a
unique, continuous extension into another axisymmetric stable state. However, if the initial
state lies on the stability boundary, the uniqueness of extension is violated and the
equilibrium state bifurcates. Previous work has analyzed the bifurcation along the
boundary segment corresponding to axisymmetric critical perturbations (segment Cn) [74,

99, 105, 136, 142, 146]. The bifurcation behavior in the neighborhood of the stability
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boundary for axisymmetric equilibrium states with emphasis on the maximum volume
boundary segment (segment Am) corresponding to nonaxisymmetric critical perturbations
[265] has been studied. Along the maximum stability limit, depending upon the
slenderness, the loss of stability with respect to nonaxisymmetric perturbations for
weightless liquid bridges results in either a jump or a continuous transition to a stable
nonaxisymmetric shape. If A < A (segment ATy), the bifurcation is subcritical (jump
transition). If A > A (segment T m), the bifurcation is supercritical (continuous
transition). The numerically calculated value of the slenderness where this occurs is

Ac =0.4946 [265].

4.2. Experimental
4.2.1. Locating the static stability limits

To determine the stability limits a bridge was created with an initial slenderness A
and volume V; (see section 3.5.2). Then either Vg or A of the bridge was changed in a
quasi-static way until the stability limit is reached (see Figure 3.14). This method was used
for numerous starting configurations, as well as different Bond numbers. In this way, the
stability region for a given Bond number was mapped out point by point. The Bond
numbers chosen were Bo = 0.002, 0.054, and 0.089. In addition, for a particular Bond
number, it was desired to investigate the behavior of a bridge in a neighborhood of the
transition point between axisymmetric and nonaxisymmetric critical perturbations. A
Bond number of 0.089 was chosen.

It is necessary to understand that these stability limits are static stability limits. That
is, the bridge is stable to infinitesimal perturbations only. Injecting a finite amount of o1l
does not always meet this criteria, and neither does finite movement of the support disks.
However, the bridge cannot be initially created at the stability limit. Therefore, a bridge
well inside the stability region would be created, and the bridge slowly brought to the limit.

More specifically, starting from A =0.002, V = 1, a path in the region of stability far from
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the margin would be followed to create a bridge with the approximate slenderness and
volume. This bridge would still be stable against perturbations that can be large. Then, A
and V( would be changed in decreasing finite amounts to bring the bridge as close to the
stability limit as possible. As the bridge approached the limit, the time taken between
successive changes in A or Vo increased to approximately 3 minutes, to allow the
perturbation caused by deforming the bridge to decay. Smaller and smaller increments of
disk displacement and smaller and smaller amounts of oil were added or subtracted until
the bridge lost stability. The final 3A/A  was approximately 0.1% and dV/V was
approximately 0.5%.

Locating the maximum volume stability limit was significantly more difficult than
locating the minimum volume limit. It is not trivial to observe the loss of stability to a
stable nonaxisymmetric shape (see Figure 4.3 a-j). The change in shape from a rotund
axisymmetric shape to a rotund nonaxisymmetric shape is very slight, and there is no
guarantee that the axis of maximum deformation will occur in a convenient plane of
observation. In order to compare one bridge to another, the bulge must be in a consistent
location. However, as mentioned above, this should not occur naturally. Small amounts
of misalignment between the upper and lower support disk lead to premature loss of
axisymmetric stability. The bridge can never be truly axisymmetric if the support disks are
not axisymmetric. It is possible to know if the misalignment of the disks are more of a
perturbation to the bridge shape than allowed by noting if the bridge consistently loses
stability to a final nonaxisymmetric configuration with a fixed orientation in space. This
was never observed. This indicated that the disks were properly aligned. Very sensitive
methods of detecting the shape disturbance had to be developed. and the bridge and bath
had to be completely isolated from all external disturbances, including vibrations and air

currents from the air conditioning system. Thus, the optical table was floated on



o Vi + 40V

Figure 4.3. Loss of stability to a nonaxisymmetric perturbation. A =1.02. Vj=2.82,
8V = 0.095, Vc = 2.83, Bo <104,
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compressed air and the air conditioning system was turned off while the experiment was in
progress. Various methods were tried to unequivocally determine the loss of stability.
One method measured, under high magnification, the deformation of a bridge relative to a
fixed reticule. The other method compared the centerline of the bridge to the centerline of
the disk supports under lower magnification. Both have distinct advantages and

disadvantages, as discussed below.

4.2.1.1. Shape deformation

This method is more precise and sensitive to changes in the bridge shape, but
because the experiments are done at high magnification, the entire bridge could not be
imaged. It was thus difficult to determine when the bridge was in fact axisymmetric.
Sample images are shown in Figures 4.4 and 4.5. Figure 4.4 contains two images of a
bridge of slenderness 0.45 separated by a 8V =0.02 . Figure 4.5 consists of four images
of a bridge of slenderness 0.55 each separated by 8V =0.02. Although there is a clear
qualitative difference in the behavior of how each bridge deforms in response to small
changes in volume, these images do not provide quantitative data. It is clearly impossible
to determine which of the bridges are axisymmetric. The next approach attempted to
quantify the deformation of the bridge shape by identifying the location of maximum
deformation. First the bridge was brought near the upper stability margin, making sure the
bridge remained axisymmetric. Then the magnification of the bridge was greatly
increased. The magnified image of the bridge was moved so that a reticule intersected the
bridge outline (see Figure 4.6 for a schematic). The distance between the fixed reticule
would decrease with small additions of oil until the stability limit had been reached. Then,
as the bridge crosses the stability margin, a bulge forms opposite the section of the bridge
being imaged. When this occurs, the addition of oil caused the distance between the bridge
silhouette and the reticule to increase. The difficulty remained that the maximum

deformation may not occur in the plane of observation. To overcome this, the supports
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were slowly rotated until the distance between the bridge silhouette and the reticule was a
maximum. At this point, the bulge is located directly opposite the imaged side. Several
more volume increments were added to follow the shape evolution near the maximum
volume limit. The volume of the bridge was then slowly decreased in small decrements of
oil. Small withdrawals of oil caused the measured distance between the bridge and the
reticule to decrease until the stability limit was crossed, and then small withdrawals of oil
caused the distance to increase again. This method was chosen because the rate of change
of deformation versus volume will always pass through zero at the stability margin. By
contrast, if the bulge side was used at the reference, the rate of change of deformation with
volume increment would not indicate clearly when stability was lost.

Using this method the question of shape hysteresis could be studied. Given a
general subcritical bifurcation, hysteresis is usually observed in the independent variable
(see, for example, [269]). This fact is often used to great effect in optical, magnetic, and
mechanical systems. However, hysteresis in bridge shape has not yet been observed [142,

267, and it was not observed here either. This question is still unresolved.
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Figure 4.4. Nonaxisymmetric loss of stability, A = 0.45. (top): Vj. (bottom): V; + 0.02.
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Figure 4.6. Schematic of shape deformation method of measurement. A = 0.225,
V; = 1.31, V¢ = 1.33, 8V = 0.025, Bo <104,

4.2.1.2. Centerlines

A bridge was formed and oil added by a microsyringe. At each addition of oil,
five intensity scans of the bridge image were taken, one through each of the disk supports
and the other three through the bridge. The center of the supports and of the bridge were
determined by locating the edges of the features in the scan line (Figure 4.7). If the
centerpoints coincide, the bridge is assumed to be axisymmetric, and if there is a difference

greater than the measurement error (2 pixels) then the bridge is assumed to be
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nonaxisymmetric. The initial volume of oil in between the disk supports is taken into
account by assuming a right circular cylindrical bridge of slenderness 0.002. (0.002 is the
average initial gap of the disk supports). This method provides a means to measure the
critical volume V_ at an extremely high level of precision.

This method was not quite as accurate as the previous method, but we were able to
image the entire bridge by using a moderate amount of magnification. The main advantage
to this is we were able to quickly and easily determine if the bridge was axisymmetric. The
method of comparing centerlines produced similar results to the results obtained with the

shape deformation method.
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Figure 4.7. Method of centerlines. A = 0.225
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4.3. Results

4.3.1 Static stability limits

12.5

10

7.5

Figure 4.8. Comparison of numerical and experimental results. (O): Bo =0.002. (©):
Bo = 0.056. (0): Bo =0.089. (red line): numerical results, Bo = 0.05. (blue line):
numerical results, Bo = 0.1.

The results obtained for various Bond numbers are presented above. in Figure 4.8.
Each region of stability for a given Bo is enclosed by a region with a smaller Bo. There is
no maximum Bo such that there exists stable axisymmetric bridges. Each region is closed.
except for the case Bo = 0. Along segment OC (see Figure 4.1), the bridge will lose
axisymmetric stability and attain a stable nonaxisymmetric shape. This configuration will
be stable for volumes well in excess of the axisymmetric limit (see Figure 4.9) As point C
is approached, the bridge will lose stability to a nonaxisymmetric mode while also necking
down axisymmetrically (see Figure 4.10). Along the segment CD, the bridge loses
stability through axisymmetric modes. It will form a neck, and upon losing stability, will

break into two distinct pieces plus a satellite drop (see Figure 4.11). In general, the halves
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will not have equal volume, as the dangerous perturbation is a sine function (the neck will
occur approximately 1/3 the distance from a support). The segment DO was not

investigated here.

Figure 4.9. A stable nonaxisymmetric bridge. A = 0.87

4.3.2 Bifurcation of a neutrally stable weightless bridge at the maximum volume limit

Figure 4.12, below, summarizes the bifurcation data for liquid bridges of various
slenderness using the method of shape deformation (the deformation has been made
dimensionless by normalizing to the radius of the disk support). The sudden large
deformation observed for bridges with A < 0.4 as they bifurcate from the critical
axisymmetric state, combined with the theoretical prediction that these bridges should
undergo a subcritical bifurcation, suggests that the expected jump-like transition for A <
0.4 is physically manifested in a rapid evolution toward the stable nonaxisymmetric state

through a continuous sequence of unstable shapes. Work should be done to
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unambiguously determine the presence or absence of hysteresis across the maximum

volume limit.

Figure 4.10. Loss of stability near the transition point C. A =3.530. Bo=0.089

Figure 4.11. Loss of stability to axisymmetric perturbations. A =3.412.
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Figure 4.12. Data for bifurcation experiment. Shown here is the rate of change of
dimensionless deformation & versus V against V/V¢.

4.4. Conclusions

The static stability limits for axisymmetric liquid bridges held between coaxial
disks of equal radii were investigated. The experimental data agrees with previous results,
except for the maximum volume, large A regions of stability. This is due to imperfect
wetting at the disk edge, which causes the bridge to lose stability prematurely. The detailed
behavior of a bridge as it undergoes a bifurcation to a nonaxisymmetric configurations was
studied. It has been shown that there exists a critical slenderness A¢, below which the
bridge undergoes a rapid transition to a stable nonaxisymmetric shape, and above which
the bridge undergoes a continuous transition to a stable nonaxisymmetric configuration.
Future work could study the stability limits of nonaxisymmetric bridges, either large
bridges held between coaxial disks or bridges held between noncoaxial disks. The loss of

stability due to contact line depinning could be studied as well (segment OD in Figure 4.1).



Chapter 5

DETERMINATION OF THE STABILITY LIMITS OF LIQUID BRIDGES
HELD BETWEEN UNEQUAL COAXIAL SUPPORT DISKS

1. Introduction

The static stability limits for axisymmetric liquid bridges held between unequal
coaxial circular disks were measured as part of a process to analyze the effect of support
geometry on liquid bridge stability. Although much work has focused on stable bridge
configurations held between supports of equal size, much less work has been performed
when the supports, either spheres [31] or disks [73, 115], are of unequal size, and focused
on the minimum volume limit. Here, both maximum and minimum volume limits were
measured for K = 0.2, 0.4, 0.6, and 0.8, where K is the ratio of the disk diameters. These
limits were each measured at Bo = 20.100. In addition, the effect on bridge stability as
K — 0 was investigated for K =0.09. It should be emphasized that this is the first
experimental comprehensive examination of the problem, and the first examination of the
maximum volume limit. With the exception of [165, 265], the numerical solution to this

problem has not been worked.
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2. Method

The experimental method used is identical to the method described in Chapter 4. A
bridge would be created at a starting configuration (A;, Vi) and the disk separation and

volume slowly changed to bring the bridge to the stability limit.

3. Results

The character of the stability limits is fundamentally altered for the case of unequal
disks (Figure 5.1). These numerical solutions for this problem was presented in [169].
Now there is a difference if gravity is pointing “up"’;jtowards the larger disk (Bo <0), or
“down” towards the smaller disk (Bo > 0). The regions of stability are no longer nested as
they were for the case of equal disks. There exists a maximum positive Bond number for
each value of K < 1 such that there are no stable bridges for Bo > Bomax(K). There exists
several cusp points on the boundary. For Bo > 0, the cusp point on the lower boundary is
an absolute minimum volume for a particular aspect ratio, for all values of K. The effect of
axisymmetric loss modes at the lower cusp point can be used as part of a very sensitive
method to measure Bo (see Chapter 3, [116]). For Bo<0, K<0.3, there exists a cusp
point on the maximum volume limit marking a transition from nonaxisymmetric breaking
modes (A > A¢) to axisymmetric breaking modes (A < A¢). For Bo > 0, K < 0.3, there is
also a transition to axisymmetric breaking modes on the maximum volume limit, but there
is no corresponding cusp point.

The experimentally measured stability limits are shown below (Figure 5.2). The
location of the cusp point on the minimum volume limit was found for Bo = 0.1 and all
values of K. It as found that for Bo = +0.1, K < 1, stability may be enhanced in the sense
that a bridge of a given aspect ratio will be stable at a smaller volume than is possible for K
= 1. When gravity points toward the smaller disk (Bo > 0), the bridge assumes a pendant
drop shape and this helps the bridge remain anchored to the smaller disk (see Figure 5.3a).

The transition from nonaxisymmetric critical perturbations to axisymmetric critical
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perturbations on the upper stability limit was found for K = 0.2. Figure 5.4 shows a bridge

near the maximum volume limit when critical perturbations are axisymmetric.

Figure 5.1. Numerical stability limits for K < 1. (solid): Bo =0.1. (dashed): Bo =-0.1.
(dot-dashed): K = 1, Bo = 0 minimum volume limit, for comparison (from [165]).
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Figure 5.2. Experimentally measured axisymmetric static stability limits (K # 1) for
Bo = 0.1 (blue line, ¢) and Bo = -0.1 (red line, 0) under different values of the disk
diameter ratio K.

The effect on bridge configuration as K — 0 was investigated. Figure S5.5abare
bridges near the minimum volume limit for K = 0.8 and Bo = -0.1. Although the neck is
slightly more pronounced than for K = 1, the overall effect is slight. In the limit of K — 0,
the bridge behavior should approach that of a hanging drop or sessile drop, with the

additional constraint on A. It is important to note that while in the limit of a vanishing disk
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radius the minimum volume limit for a liquid bridge has a physical meaning, while for a

hanging drop it does not. This can be seen in Figures 5.6 and 5.7, where K = 0.2 (Figure
5.6) and K = 0.09 (Figure 5.7). Here, a squared-off hypodermic needle was used as the
lower disk for K = 0.09 (the dropping tip of chapter 3). However, because the needle did
not have sharp edges, the maximum volume stability limit could not be studied as the

contact line would slip over the edge.

-

Figure 5.3. Examples of bridges near lower stability limit (K =0.2). (a) A= 3.744,
V =229,Bo=0.1 (b) A=2.606,V =5.04, Bo=-0.1
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Figure 5.4. Example of symmetric loss of stability along upper stability margin, (K=0.2,
A =1.03, V=459, Bo=0.1). Note that the disks are slightly misaligned.

Figure 5.5. Axisymmetric liquid bridges near the minimum volume limit (K = 0.8,
Bo=-0.1). (a)A=2.778,V=5.00. (b) A=3.28, V=482
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Figure 5.6. Effect on bridge configuration as K — 0 (K= 0.2,Bo=0.1). A=3.73,
V=347

(b)

Figure 5.7. Effect on bridge configuration as K — 0 (K =0.09, Bo=0.1). (a) A=2.285,
V~6. (b)A=173,V~3.
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4. Conclusions

The effect of support geometry on bridge stability was investigated through use of
coaxial unequal disk supports. Several qualitative differences occur between this case and
the case K= 1. The minimum volume cusp point provides a useful method for
determining Bo. In [116] a similar method to the one outlined here was used, the
difference being in that case, the ratio of drop volumes after breaking was used to
determine the location of the cusp point. The existence of a second transition point on the
maximum volume limit to axisymmetric breaking modes is a second difference.
Comparison of experimental values with numerical calculations is good, except at the
maximum volume limit, large A region, the same as K = 1. This is due to imperfect
wetting conditions at the disk edge. The limiting effect as K — 0 was investigated for
K = 0.09. Bridge stability is enhanced when Bo >0, K< 1, even approaching the Bo =0,
K = 1 case. Future work could investigate the stability of nonaxisymmetric bridges that
result following the loss of axisymmetric stability, as outlined at the end of chapter 4. The
limiting case for K — 0 could also be investigated further. The most practical way would

be to increase the larger disk radius.



Chapter 6

DYNAMICS OF VIBRATING LIQUID BRIDGES

1. Introduction

A series of experiments has been undertaken to determine the spatial mode
structure of neutrally buoyant right circular cylindrical liquid bridges held between coaxial
sharp-edged disks subject to lateral sinusoidal oscillation at various amplitudes in the
neighborhood of the fundamental resonance (see Figure 6.1). This began as a verification
of a g-jitter numerical study performed earlier [106]. Experimental and theoretical studies
of non-axisymmetric oscillations are limited. Small amplitude inviscid non-axisymmetric
oscillations have been examined theoretically by Gaiian and Barrero [97]. Experimental
work with lateral oscillation of the lower disk was also carried out by Sanz and Lopez-
Diez [62] and Tsamopolous et al. [15]. Experiments were performed with both the disk
supports vibrating laterally in phase. In all frequency sweeps, the acceleration was held
constant, thus requiring the displacement amplitude to change with frequency. This is
different from previous experiments [62] where the displacement amplitude was held
constant during a sweep of frequency. This way we could measure the bridge sensitivity to
acceleration in a more straightforward manner. We attempted to measure the resonant
frequency by visually observing an oscillating bridge, by measuring the mechanical gain of
the system (maximum bridge deformation divided by maximum disk amplitude), and by

measuring the contact angle during oscillation. We are interested in nonlinear shape
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behavior and nonlinear frequency response of vibrating liquid bridges, which act as weak

springs [15]. In an effort to explain the resonant behavior in detail, three methods were
used to analyze the dynamic bridge shape. The refraction of a laser beam passing through
the bridge in the plane of vibration was observed. The spatial mode structure of the bridge
was imaged via the Fourier plane. Finally, an FFT was performed on the filtered image of
the bridge.

Here the first experimental observation of the nonlinear third harmonic present in a
liquid bridge undergoing lateral vibration at the fundamental frequency is reported.
Typically, a forced nonlinear oscillator will display a nonlinear third harmonic contribution
to the response [269]. Images of a V = 1, A = 2.6 bridge oscillating near N = 1, 2, and 3,

m = | resonances are shown below (Figure 6.2).

2, Gain experiments

This method was originally chosen because previous experiments used the same
method [62]. However, at small excitation amplitudes, bridges made from 100 cs oil
would not deform enough to provide an accurate measurement. Thus, 5 cs oil was used.
The gain was measured by measuring the maximum amount of bridge deformation and
comparing it to the amount of distance the support disks moved. The maximum
deformation of the bridge was measured by placing a Ronchi ruling between the
collimating lens and the liquid bridge. The magnification of the ruling was measured by
moving a disk a known distance until one period of the ruling had been traversed. Each
Ronchi ruling period corresponded to 0.5 mm in the object plane. Thus, the deformation
could be measured by counting the line pairs of the ruling. This method provided a simple
and reasonably accurate means to measure a deformation of a fluid body when the center
of mass does not remain in a set position. A sample raw image is shown below [Figure

6.3]
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Figure 6.1. Computed resonant shapes of laterally oscillated bridges (from [62]).
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Figure 6.2. Images of laterally oscillated A = 2.6 liquid bridges. (a:N=1,m=1. (b):
N=2,m=1 (c)N=3,m=1.

The gain curves show clear evidence of saturation (Figure 6.4). That is, increasing
excitation amplitudes do not produce a proportionately increasing deformation. It should
be pointed out that large amplitude oscillations produce bridge motion not limited tom = 1.
In addition, evidence of complicated bridge behavior in the neighborhood of the resonant
frequency at small amplitude oscillations is seen. In particular, the presence of the local
minimum on what is otherwise an ordinary resonant peak prompted the construction of a
method to even more precisely and accurately characterize the bridge shape during
oscillation. Measuring the contact angle the bridge makes with a disk support provides

more sensitive measurements. The reason for this is explained below.
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Figure 6.3. Experimental image of a laterally oscillating liquid bridge, A
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Figure 6.4. Experimentally obtained gain curves, A = 2.826. (O): A =0.1 cm/s2.
(©):A=05cm/s2. (0):A=1.0 cm/s2. Note the saturation and the complex behavior of
the gain curves in the vicinity of the resonant frequency.

A V = 1 weightless liquid bridge undergoing a small lateral sinusoidal oscillation

has a deformation fp [15,62]:

fp ~ ANmZNm(2) cosmd cos(@Nmt + ONm ) (6.1)

where N, m are the axial and azimuthal wave numbers, respectively. The axial
term, ZNm. closely matches cos(nz/2A) for N = 1 and sin(nz/A) for N =2 [15]. The axial
function is normalized to the height of the bridge z=-A to z=A. In the case N, m = 1,

and ignoring the time-dependence term, the contact angle ¢ at the disk supports is given

by:

anep =3 =4[ sin(ﬁ)i (6.2)

dzl,—+A 2A A

7=tA
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which reduces to:

o= tan—l(A“%) (6.3)

Therefore, if Aj] << 1 (small amplitude excitations), small changes in the
excitation 8A | will produce small changes in deformation 6f}, but large changes in contact
angle 8¢. In addition, the contact angle can be measured more accurately than the shape
deformation amplitude. In addition, we felt that we could reduce some of the measurement

error by using contact angle measurements.

3. Contact angle experiments

Experimental data of the range of contact angle motion during lateral oscillation is
shown below [Figure 6.5]. Each point represents 6 measurements of the contact angle
taken at 100x magnification (3 at maximum and 3 at minimum). The time of maximum
and minimum contact angle was fixed by measuring the contact angle 20 times during one
oscillation period. The image was frame grabbed and each captured digital image was
analyzed manually by an image processing program (Matrox Inspector®).

A = 3.0 shows behavior consistent with the gain data and [15]. The resonant
frequency is lower than the linear theory predicts, consistent with a liquid bridge
representing a soft spring. Now a local minimum can be clearly seen in the neighborhood
of the resonant frequency. Based upon eigenmode analysis (see below), the local
minimum is at the resonant frequency, and that the inhibition of contact angle motion 18

caused by nonlinear shape deformations of the bridge.
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Figure 6.5. Measured range of contact angles assumed during lateral oscillation of a liquid
bridge. (O): A=0.1cm/s2. (0): A=0.2cm/s2. (A): A=03 cm/s2. (0): A = 0.4 cm/s2.

There is similar behavior when laterally vibrating a bridge of A =2.6. There is a
local minimum of contact angle motion immediately surrounding the resonant frequency.
Note that at high vibration amplitudes, the liquid bridge is not in a pure m = 1 state. This
explains the broadening of the resonant peak, and the loss of a well-defined local

minimum.

4. Mode analysis

Three different methods were used in an attempt to quantify the spatial mode
structure of the bridge during oscillation. The first involved observing a raw laser beam as
it was deflected by the bridge deformation. The second involved observing the behavior of
the bridge in the Fourier plane. Lastly, a FFT was performed on the filtered image of the

bridge.
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4.1  Laser beam deflection

Because the index of refraction of the bridge is different from the index of
refraction of the bath, light passing through the bridge is refracted (Figure 6.6). A raw
laser beam passed through the bridge near the centerline in the plane of oscillation at
various axial heights. A position sensitive photodiode collected the deflected beam (see
chapter 7), and the position monitored as the bridge underwent lateral vibration. An
advantage of this method is that effects from m # 1 modes can be partially filtered out by
only observing the deflection in the axial direction. The shape of the beam that impinges
on the photodiode is a horizontal line due to refraction of the light through the bridge. The
bridge has approximate optical powers of 0.12 perpendicular to the plane of oscillation and
0.02 in the plane of oscillation. Both of these depend on the specific composition of the
bath and the shape of the bridge. A cylindrical lens, placed appropriately, would cancel out
much of the refraction perpendicular to the plane of oscillation. Data is shown below

[Figures 6.7-6.9]. Some striking features especially stand out.

L L L

A (2) (b)
\ \
\ \ =

“~

el

Detector plane

P

Figure 6.6. The refraction of a light ray through an oscillating liquid bridge. (a): the
deflection of a beam during oscillation. (b): the effect of aberrations on a refracted beam
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Figure 6.7. FFT of a raw laser beam passing through a laterally oscillated bridge in the
plane of vibration. See text for a detailed description

Figures 6.7 a-f show the FFT obtained by a beam passing through different
portions of the liquid bridge. In all cases, the beam passes through a A = 2.6 bridge in
the plane of oscillation, near the centerline. Figure 6.7 a-c is for an oscillation amplitude of
0.1 cm/s2, and Figure 6.7 d-f if for an amplitude of 0.5 cm/s2. Note the difference in
behavior as the beam passes through the bridge (a,d) near the feed disk (z = A), (be)
halfway between the feed disk and the midplane of the bridge (z = A/2), and (c,f) the

midplane of the bridge (z = 0). Figure 6.7 a-c represents the behavior of the bridge in a
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small oscillation regime, while Figure 6.7 d-f represents nonlinear behavior of the bridge.

Note the presence of the second harmonic which occurs even at very low excitation
amplitudes. The second harmonic is most suppressed at z = A (near the support disks)
and least suppressed at z = 0 (the midplane). When the beam passes near the midplane, the
beam is undeflected for a total of 4 times per oscillation period, when it is undeflected a
total of 2 times at other axial positions. The higher order terms are due to aberrations
introduced by the dynamic surface of the bridge. This is shown schematically in Figure
6.6 b for the simplified case of spherical aberration. As the bridge deforms, the surface
becomes (equivalently) an aberrated lens (broken lines in Figure 6.6 b), and the beam will
strike the detector in a different spot than it would for an aberrated lens (solid line in Figure
6.6 b). Thus the higher order modes present in the refraction data provide information
about the dynamic shape of the bridge. A careful quantitative analysis of the aberration
effects would be very useful and might provide a detailed description of the dynamic
bridge shape during oscillation.

Figures 6.8 and 6.9 are spectra of beam deflection for a beam located at z = A/2
for a range of frequencies at acceleration amplitudes 0.1 (Figure 6.8) and 0.5 (Figure 6.9)
cm/s2. Although it is not clear which of the excitation frequencies represent an
eigenfrequency, it is clear that higher-order mechanical vibrational terms are present in the
response of the bridge. In all cases, the deflection of the beam shows remarkably sharp
peaks, and the spectra is relatively free of noise. The presence of higher-order terms occur
with great regularity, in some cases, up to the fifth harmonic is visible. There appears to be
a suppression of the higher modes at frequency 0.865 Hz and 0.930 Hz in Figure 6.9. In
addition, there seems to be a transition from a slightly noisy spectra below a certain
frequency to a very clean spectra above a certain frequency, in this case 0.860 Hz for

Figure 6.8 and 0.930 Hz for Figure 6.9.
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119
4.2.  Direct imaging of the spatial mode structure

The second experiment directly imaged the spatial Fourier transform of a A = 2.6
liquid bridge. It was hoped that the spatial modes would provide a recognizable signature
in the Fourier plane. Fig 6.10 a-d are images of the liquid bridge undergoing spatial
oscillations with amplitudes 0, 0.04 , 0.1, and 0.2 c/s? at a frequency of 0.880 Hz. This

frequency was chosen because it was near the first resonant frequency for the various

amplitudes. The presence of the dc stop is clearly shown.

Figure 6.10. Images of the Fourier plane of a laterally oscillated liquid bridge.
(a): A=0cmv/s2. (b): A=0.04 c/s2. (c): A=0.1 cm/s2. (d): A =0.2 cm/s2. The dc
term has been blocked.

Unfortunately, although some qualitative analysis is possible, the complexity of the

Fourier plane precludes quantitative analysis. Among other problems, the light refracted
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through the bridge obscures the desired information for much of the oscillation period, and

only at some very specific times (maximum, minimum deflections) can the images be
compared. An attempt was made to digitally subtract one image from another, but this did
not improve the images. The fundamental is shown by the diagonal lines, left-right and
up-down symmetric that occur at approximately 45° (this value depends on the amplitude
of the deformation). The presence of higher harmonics are revealed by the side-lobes to
the fundamental resonance lines. An analytic expression for the Fourier transform of the

bridge does not exist, being of the form (using the notation in [263,264]):

F(n,§)= ﬁ” dx dy[rect(%)é(x -cos(y) £ %H ezni(nx+§y) (6.4)

where the argument is the expression for the (filtered) bridge silhouette. An approximate
solution can be obtained by approximating the cosine shape of the bridge as two lines that
meet at an angle { (see Figure 6.11). The magnitude of the transform of this would also be
two lines (really the line response of the system [263]) that intersect through the origin at

an angle {/2, in qualitative agreement with Figure 6.10 . Recall:
g(n.&) = F(8(8-0)) = 1/2r?)(ncost+Esind) 2. (6.5)

The lines in the transform plane are at different phases due to the lateral offset of the
lines in the object plane from the origin, but intensity-dependent measurements are
insensitive to this phase difference. Including lines at different angles to better approximate

the true sinusoidal shape would introduce other lines in the transform plane at other angles.
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Figure 6.11. Approximation to bridge shape and the corresponding Fourier transform

4.3.  Numerical analysis of the bridge shape

Lastly, an FFT of the spatially filtered bridge image was performed (see fig 6.12,
6.13) to analyze the bridge shape. Images taken while the bridge was oscillating were
digitized. Scan lines across the image were used in a method similar to the method of
centerlines in chapter 4, section 2.1.2. The edge of the bridge silhouette was sampled at
regular intervals in the axial direction, and the data was subjected to a built-in FFT
algorithm in Mathcad®. The fundamental response of the bridge, sin (z/A), was subtracted
from the image data, and after subtracting out this fundamental frequency component, the

third harmonic appears clearly at the acceleration amplitude 0.2 cm/s2,
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Figure 6.12. Filtered images of a laterally oscillating bridge. (a): A =0 cmy/s2.
(b): A =0.04 cmy/s2. (c): A=0.1cm/s2. (d): A=0.2 cm/s?-

S. Conclusions

The nonlinear dynamics of a neutrally buoyant V =1 laterally oscillated liquid
bridge have been analyzed. In particular, it has been determined that when the disk
supports are laterally oscillated near the first resonant frequency of the bridge, even at low
excitation amplitudes, the amount of contact angle motion occurring during oscillation
decreases relative to exciting the bridge off-resonance. This is due to the presence of a third
harmonic mechanical response of the bridge. This was determined by utilizing the nature
of the Fourier transform to identify the spatial modes. There appears to be a qualitative
difference in resonant behavior between A = 2.6 and A = 2.826 bridges, and this should be

explored further.
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Chapter 7

LIQUID BRIDGE FORCE MEASUREMENTS

7.1. Introduction

Forces exerted by a liquid bridge on a solid support are important in powder
wetting problems, deformations of porous or unconsolidated media, and in adhesion
problems [6-10]. Surfaces being studied with Atomic Force Microscopy (AFM) or
Scanning Tunneling Microscopy (STM) techniques can be damaged by the formation of a
bridge between the sample and the scanning tip [270]. The forces involved are the capillary
force due to interfacial tension, and the hydrostatic pressure due to the curvature of the
liquid bridge surface. For a liquid bridge held between two coaxial disks, we used a force
deflection apparatus to measure the total force exerted by a liquid bridge on the lower disk.
The lower disk was replaced with a thin polycarbonate disk which was attached to the end
of a long cantilever arm (see Figure 7.1). The cantilever arm acts as a weak spring. The
liquid bridge displaces the disk by an amount proportional to the total force, Fior, exerted
on the disk. Then, by directly measuring the displacement, we can determine Fyo. After
calibrating the deflection of the cantilever arm with known applied loads, two sets of
experiments were performed. In the first set, the total force was measured for various
aspect ratio right circular cylindrical bridges (Bo = 0). This provides a simple method to
measure the interfacial energy y. The second set of experiments involves measuring the

force exerted by liquid bridges with a variety of aspect ratios and volumes at different Bond
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numbers. The principal question to be answered by this set of experiments is how the

force changes as the liquid bridge approaches the minimum volume stability limit. In

addition, computations of the force were carried out and the results compared with

:

experimental data

Feed Rod

Mobile Upper Disk
Liquid Surface

Cantilever

Polycarbonate Disk™ = ———____

Figure 7.1. Force balance apparatus.

7.2. Theory
For a liquid bridge immersed in a bath, the total force Fio exerted on the lower disk
is:
Fiot = Fcap + Fhydro (7.1)
or:

Fo = 2nRy sing - 2nR%Jy (7.2)
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where R is the radius of the disks, Y is the interfacial energy, ¢ is the contact angle, and J is
the mean curvature of the liquid bridge near the lower disk.

For right circular cylindrical bridges, the total force simplifies considerably, as the
contact angle is 90 degrees, and one of the principal curvatures is zero. Therefore, for right

circular cylindrical (weightless) bridges, the total force is given by:

Fiot = MRY (7.3)

The force can be nondimensionalized by dividing by this scale factor, F = Fio/TRY.

7.3. Apparatus

A steel cantilever arm, length = 8.5 cm, diameter = 0.009 inches (0.0229 cm), was
attached to a rigid support at one end and to a 1 cm diameter thin polycarbonate disk at the
other (Figure 7.1). The cantilever arm was an electric guitar string (GHS strings) and is a
plain steel similar to piano wire or spring steel. To easily track the movement of the disk, a
piece of reflective white plastic tubing was located 6.2 cm from the fixed end of the
cantilever arm. This piece of plastic diffusely scatters a laser beam, which was collected by
a 35 mm single lens reflex camera and an 80 mm macro zoom lens, with a position
sensitive photodiode mounted at the film plane of the camera. It was found that the
maximum signal to noise ratio was obtained by a combination of maximum zoom and
maximum defocus of the lens. This produces the largest spot of light on the photodiode.
The photodiode is connected to a United Detector Technology model 431 X-Y position
monitor. This position monitor provides separate outputs for position in the x-direction
and position in the y-direction. By decoupling the motion in the vertical and horizontal
direction, we can ignore the horizontal component of motion due to the fact that the disk
moves along a segment of arc and not straight line. Output from the position monitor was

sent to a chart recorder. The movement of the reflective plastic was tracked, and thus of
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the lower disk. In addition, the liquid bridge was monitored with a CCD video camera
connected to a video monitor through a videocassette recorder. This allowed direct
measurement of the contact angle on the lower disk, which was used to estimate the
amount of capillary force.

To calculate force from the measured deflection, it was assumed that the cantilever
arm obeys Hooke’s law. This was verified by displacing the disk a known amount and
measuring the resultant load. The modulus of elasticity of the cantilever arm was found to
be 30.42 x 106 psi, or 2.138 x 109 g/cm?, and the effective spring constant was measured

to be 137.51 dyne/cm. The force constant is linear over a large range of motion.

7.4. Procedure

7.4.1 Calibration

To calibrate how motion of the disk was related to motion of the chart pen, the
lower and upper disks were connected by a thin film of silicone oil. Because the thin film
holds the two disks together, the motion of the upper disk equals the motion of the lower
disk, in the limit of small displacement. The upper disk was moved by computer
controlled stepping motors moving along linear actuators. The precision of movement of
the upper disk is 2.05 x 103 cm. The deflection of the chart pen was recorded and the
position was held constant for two minutes to give a stable average reading. For small
displacements (less than 0.25 cm) the motion of the pen was a linear function of the disk
displacement (see Figure 7.2 a-d). For larger displacements, a quadratic fit is necessary.
Two different lasers were tried, a S mW HeNe laser and a 15 mW HeNe laser. It was
found that the brighter spot of the higher power laser greatly reduced the measurement
noise of the position sensitive photodiode. In addition, the 15 mW laser produced a nearly
linear relationship between actual disk displacement and chart recorder output. Thus, the

higher power laser was used for all experiments. The calibration procedure was performed
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for each separate trial run. This is because changes in the relative positions of the

photodiode and reflector plastic and changes in the amount of ambient light alter the scale
factor for the chart displacement versus disk displacement. As shown on the calibration
graphs, although each scale factor is approximately the same (with the exception of the 5

mW laser), the scale factor does change from calibration to calibration.
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mW HeNe laser source
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7.4.2 Right circular cylindrical bridges

The forces exerted by right circular cylindrical bridges with different aspect ratios
were examined. This was done by allowing the cantilever arm to establish its equilibrium
position corresponding to the buoyancy force of the disk and wire relative to the bath. This
position was recorded on the chart recorder. The upper feed disk was then brought into
contact with the lower disk, and adjusted to bring the lower disk back to its equilibrium
position. This eliminates any effect caused by the buoyancy of the cantilever arm. The
density and temperature of the bath was adjusted to produce nearly neutral bouyancy
conditions (see section 3.5.1). Silicone oil was manually injected, and the upper feed disk
moved until the bridge appeared to be a right circular cylinder upon visual inspection. The
aspect ratio was measured directly from the viewing monitor with a set of calipers, and the
displacement of the lower disk measured directly from the chart recorder. For right
circular cylinders, the total force on the lower disk reduces to a linear dependence upon the
radius of the disk and the interfacial energy. Because the radius of the disk is a constant,
the displacement of the lower disk is proportional to the interfacial energy only. This fact

was used to measure the interfacial energy 7y at low Bo (see section 3.4.3.1.3).

7.4.3 General Liquid Bridge Configurations

The final set of experiments involved mapping out sections of the A-V stability
region for a given Bond number. Before creating each new bridge, the cantilever arm was
brought to its equilibrium position. The computer controlled motors were used to displace
the upper disk a specified amount. The microsyringe injected a known amount of silicone
fluid. The deflection of the lower disk was continuously recorded for a series of
deformations, and the physical parameters of the bridge (volume, aspect ratio) were
calculated from records of motor and lower disk movement. A sample of raw output data
from the chart recorder is shown below (Figure 7.3), and the data is presented in Figure

7.4. Beginning on the left-hand side, the calibration of disk motion is recorded. The pen
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travels from left to right at a speed of 1 in/10 min. The next feature present is the initial
location of the lower disk. After the bare disk reaches an equilibrium position, the upper
disk is brought into contact with the lower disk, causing a displacement of the lower disk
until the oil wets the lower disk. The lower disk is then manually brought back to the
original equilibrium position. The three curves each represent a bridge of fixed Vg
subjected to changes in A. The numerals indicate how many squares the curve is from
equilibrium. The first curve represents (A;, V;) of (0.338, 1.88), the second, (Aj, Vi) of
(0.219, 1.16), and the third (A;, Vi) of (0.134, 0.946). Note how as A; decreases, the
behavior of the bridge as the minimum volume stability limit is approached becomes more
and more exaggerated. At the end of the final sequence the bridge broke. Note that the (A,
V) values for the first two or three points of the final curve of the raw output lie outside of

the stability margin. A possible explanation will be presented at the end of this chapter.
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Figure 7.3. Chart recorder output of lower disk deflection
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Figure 7.4 . Graphs of F and V against A.

There is one striking and unexpected trend in the data. For bridges with small
volumes and aspect ratios, the force curve exhibits a maximum upward force before the
bridge crosses the minimum volume stability limit. This contrasts with larger bridges that
do not exhibit this maximum. We also performed a numerical calculation of the force
exerted by the bridge on the lower disk, and the graph is superimposed over the measured
data (Figure 7.5). The calculations do not match well at low aspect ratios and high
volumes, but the calculation converges with the measured values at larger aspect ratios and
smaller volumes. A reason why this may be the case is shown on the graph comparing the
measured values of the contact angle with the calculated values (Figure 7.6). There is a
large difference between the predicted value of the contact angle and the measured value of
the contact angle. The possibility of a volume error in the experiment was investigated.
The calculation was performed again, but with a 5% reduction in volume. Although
agreement was slightly improved (Figure 7.7), the amount of volume error to completely

account for the discrepancy is unrealistic, given the accuracy and precision of the syringe.



133

1.5 T T T 2 j T T
1 L Ul”'!:-.o..:.ol.!“""lll -
‘. 7 ) 35O oo
1 F o0k 4
a1k i
0s5fF
2 4
3k 4
o F
4 | -
05 1 1 ] -5 o 1 1
1.5 2 2.5 3 3.5 0.25 0.5 0.75 1 1.25
3.5 - T T T 2 - T T
a
a
3 1
o 1.5 a 7
(m]
> 2.5 0 .
a .
a 1
2 r (m] B
=)
o Ho
a DD
15 ] ] 1 0.5 1 ] 1 DDU
1.5 2 2.5 3 35 025 05 0.75 1 1.25
A A

Figure 7.5. Comparison of numerical and experimental results of force measurements.
(0O) experimental points. (9) numerical points.



134

200 r T T 30 T T )
— 20 4
zo 150 1 -
ﬁ 8 f ao)b T E
2 100 [ 8390 1 <& Ird358%c+
< | + ¢ + E it
D g 8 2 £ 0 z g9 * 7]
c i Q 2 il a
3 50% 2 -10 i
0 1 1 1 _20 1 1 1 1
1.7 1725 175 1.775 1.8 1.7 1.725 175 1.775 1.8
A A

Figure 7.6. Comparison of calculated (6¢) and measured (8,) contact angles. On left: (O)
top angle (measured). (O) bottom angle (measured). (©) top angle (calculated). (A)
bottom angle (calculated). On right: (O) top angle. (©) bottom angle

1.5 T T T 201 T T T T
e T
15 k a] 4
- oS, Tl
O w 10 | I T o T .
u°<>° -:-i 1 T E o 1 <
w 05 F aog {1 2 5F T1+Tl i
[m] oo |E I © .oL
S - OF Ti1 .
o F ¢ . 17T 1
o -5 o -
° 1
0.5 1 1 1 -10 } 1 1
1.5 2 2.5 3 3.5 1.7 1.8 1.9 2 2.1 2.2
A A

Figure 7.7 Comparison of numerical and experimental results with a 5% decrease of
volume in numerical simulation. Force graph: (O) experimental points. (9) numerical
points. Contact angle graph: (O) top angle.

(©) bottom angle



135

7.5. Error sources

The primary source of systematic error is due to the fact that the radius of the
cantilever disk was not exactly equal to the radius of the upper feed disk. The ratio of disk
radii is 0.98, with the cantilever arm disk the larger. This systematic error is 4%, as the
pressure and Bo scale as RZ. The next most critical error is the fact that the lower disk does
not remain parallel with the upper disk, but instead is at a relative angle to the upper disk.
The maximum misalignment is 5 degrees, which corresponds to an error in the capillary
force of approximately 0.8%. The resolution and noise level of the chart recorder places an
error of £0.8 dyne on the total force, which is an error of 5% at typical force values. This
is larger than the systematic error. The error in volume is the same as calculated in section
3.6.6, but the error in aspect ratio is related to the error in lower disk displacement, which is
given by the resolution of the chart recorder, approximately 0.05 mm of real displacement,

corresponding to SA/A = 5 *¥10-3.

7.6  Conclusions

A series of experiments measured the force exerted by a liquid bridge on the lower
support disk. Discrepancies between the numerical results and the experimental results
were attributed to differences in computed and measured contact angles. A possible
explanation for this is that the contact line is not perfectly pinned on the polycarbonate disk.
This would also explain why a few of the bridge configurations lie outside of the stability
region. If the contact line had slipped over the edge of the disk, the lower support disk
would not be at the proper height. Future experiments with a sharp-edged steel support
disk may reconcile the discrepancy. Other future experiments could probe the dynamics of

breaking and of drop coalescence.



Chapter 8

SUMMARY AND FUTURE WORK

The static and dynamic behavior of liquid bridges have been studied for this
dissertation. New insights have been gained as a result of this work. The effect of support
geometry on the stability of axisymmetric liquid bridges has been investigated. The
dynamics of liquid bridges laterally oscillating in a neighborhood of the fundamental
eigenfrequency has been investigated as well. Lastly, the force an axisymmetric bridge
exerts on the lower disk support has been measured for a variety of A, V and Bo.

Two new results were obtained through experiments designed to study the effect of
support geometry on bridge stability. The effect of A on the loss of stability to
nonaxisymmetric perturbations has been studied. It was found that there exists a critical A,
A, such that if A < A, the bifurcation is subcritical, while for A > A¢, the bifurcation is
supercritical. The effect of K, the disk radii ratio, on axisymmetric bridge stability was also
studied. It was found that if gravity is oriented towards the smaller disk, stability is
enhanced in the sense that the minimum volume can approach the zero-gravity case for a
specific A and Bo. We also observed the loss of stability to axisymmetric perturbations
along the maximum volume section of the stability curve. The behavior of a bridge in the
limiting case K — 0 was observed for the case K = 0.09.

New experimental results were also obtained by laterally oscillating the bridge

supports. The dynamic behavior of a V = 1 bridge was studied in the neighborhood of the
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fundamental eigenfrequency N = 1, m = 1. The response of the bridge to vibration was

measured several different ways in an attempt to accurately measure the eigenfrequency

and the eigenmode. It was found that the bridge displays nonlinear behavior in both the

eigenfrequency and the eigenmode. The eigenfrequency changes with changing excitation
amplitude, and the bridge displayes a N = 3, m = 1 shape component on resonance.

The force exerted by a bridge on the lower disk support was measured, with
particular attention paid to the behavior near the minimum volume stability limit.
Agreement with numerical calculations was hampered by the lack of agreement between
measured and calculated contact angles.

Several directions for future investigations suggest themselves. This topic and the
experimental apparatus presents a wealth of possibilites for an experimentalist. A few are:
+ The stability limits of nonaxisymmetric bridges held between either coaxial or

noncoaxial disk supports could be studied.

«  We were unable to determine if there is hysteresis that accompanies the subcritical
bifurcation, and this topic could be invesitigated in the future.

« Liquid bridges held between spherical supports could be studied to investigate the role
of contact line motion, especially during dynamic processes.

+  The dynamical process of axisymmetric breaking could be studied.

« Light ray deflection measurement suggest the presence of even higher order terms in
the bridge shape, and future experiments could probe for these.

« Dynamical behavior of bridges subject to axial or lateral vibration, rotation or a
combination of all of these, with disks moving in or out of phase at either identical or
different amplitudes and frequencies.

«  Further force balance experiments with a sharp-edged steel disk support instead of the
thick plastic disk should produce better agreement between numerical calculations and

experiment.
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» The force balance apparatus could be used to explore problems in drop coalescence and

film pressure.
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Appendix A.

BACKGROUND OF TENSOR CALCULUS

Because most of the mathematics involved in fluid dynamics involve tensors, it is
fruitful to quickly review the nomenclature and any important theorems. Two basic
concepts to be reviewed are the use of the metric tensor to raise and lower indices and the
covariant, also called total or material, derivative. In general, the notation in [271] is
followed (see [271,272] for a more thorough development).

In general, a tensor may written in bold without subscripts, as T. However, to be

more explicit, the indices may be written as well: T:%‘;::'Z“. A repeated index, as Tj;Vi,

indicates a sum or inner product over the repeated index, called a dummy index. There are
three types of tensor components: contravariant, covariant, and mixed. A contravariant

component of a tensor transforms under coordinate transformations as:

. i
yi= 9% i (A.1)
oxJ

while a covariant component of a tensor transforms as:

(A.2)
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An example of a contravariant quantity is displacement, and an example of a covariant

quantity is gradient. A mixed tensor component transforms as expected,
i n
ax' ax" m

T = 2222
o axm gxd " (A.3)

In general, contravariant and covariant components are very different entities. The
indices may not be moved up or down at whim. This is because there are two equivalent
ways of explicitly writing V, V = Vie; = V;mi. The first expression expresses V in terms
of a basis set of vectors, e;, where the superscript refers to the ith vector, not the ith
component. The second expression involves the dual to the basis vectors, called 1-forms.
It is important to note that Vi and V; are in general entirely unrelated to each other.
However, in a Riemannian space, when we have a metric tensor defined, they both refer to
the same geometrical object V. Then, if Vi is known, Vj can be determined. A
summation (inner product) may only occur between a contravariant and a covariant
component. In the restricted case of Euclidean (flat) space, indexes may be raised or

lowered arbitrarily. The tensor that allows us to move indices is the metric tensor gj;:
ds? = gj;dxidx] (A.4)

where ds2 is the square of the line element between infinitesimally separated points. We

define the contravariant tensor g as: g'"g;, = 8;. Indices can now be raised or lowered,

for example,

Vi= gijVj, Vi= gijVj. (A.5)
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A second important concept is the covariant derivative. This is different from a

partial differentiation, which is written as follows:
- . l .
W Th= 9 Tj=—F=Tjx (A.6)

However, in curved space, VT # T}‘k. This is because the basis e; (as well as the 1-form,

wj) varies smoothly from point to point. VT = Vk(Tgei ®(nj) will contain additional

contributions from Ve; and V). To handle these contributions, “connection

coefficients” (Christoffel coefficients of the first kind) are defined: I’;k = <(x)i Ve j>- This

represents the ith component of change in ej relative to parallel transport along ex. The

covariant derivative of a tensor can now be calculated:

VT =V, (Te; ® o) (A7)
= Vk(Tﬁ)ei ® o +T}Vk(ei)® o+ T}ei ® Vk(mj)
=Tl ¢, @ +Tilke, ® @l - T}, Tie; ® "
= [T+ TP Thy - TR Thy fe; ® 0

where the expressions for the connection coefficients have been re-written as:

Ne =V.,e., Thal =-Vio
eren = VkeJ, I‘ka Vku) ' (A.8)
The definition of a covariant derivative, written as T},k is:
_mi i i m mmpi
VT = Tj“( —Tj,k+I‘kaj —I‘jkTm.

(A.9)

Similarly, the covariant derivative of a tensor of rank one is written:
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. : . A.10
v=vVv!. =vh+r.vm ( )
lj J mj

VV = Vilj = Vi,j - FlTVm

where the connection coefficients can also be written explicitly [257]:

. . 1
1 = lmr L= g S+ L — 0.
k=8 mjk = & 2 (gmj,k &mk,j ~ &jk,m ) (A.11)



Appendix B.
THE NAVIER-STOKES EQUATIONS

It is beyond the scope of this dissertation to completely cover the development of
axisymmetric flow problems and flow problems involving a free boundary, but a short
review of important and related concepts will be presented here and in appendices C, D.
For a more comprehensive discussion, see for example [273-278].

The basic equations governing fluid flow are derived from first priciples: the
Navier-Stokes system of equations. Then, the specific Navier-Stokes equations in (r,0,z)
coordinates are written. It is insightful to keep in mind that the Navier-Stokes equations are
simply conservation equations, recast into a different coordinate system. Typically, in
problems involving solid bodies, Lagrangian coordinates are used. These are also refered
to as material coordinates, and written in upper case. Here, the position vector R of a

particle at time “t” is given as
R =R(r,t) (B.1)

where T is the position vector from the origin to a point Ry at time t = to. The velocity of

the particle is defined as

V=R Lpruan=2 -,
Jat  at at (B.2)
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where U is a displacement vector, U = R(r,t) - r and r is independent of time. By contrast,

Eulerian coordinates, or spatial coordinates, (written in lower case) co-move with fluid
“particles”, and u = R - r(R,t). Because these variables change with both time and

position, the temporal derivative changes to the total derivative:

V=E=(i+v-V)u=u|t
Dt

at (B.3)
The first law of Thermodynamics in Eulerian coordinates is written as:
_IK + E =M+ Q
Dt Dt (B.4)

where K is the kinetic energy, U the potential energy, M is mechanical power, and Q is

heat energy. Consider a bounded volume of fluid, so that

K = % [l pvivide ®5)
u=|f IQpEdQ (B.6)

M= ] IQpFividQ+ [ IzTijnivjdE (B.7)
Q= mgpth+ jquinidZ (B.8)

where p is the density, € the internal energy density, F a body force, T the surface traction,
n the surface (outward pointing) normal, h the heat density and q the heat flux (F, T are
also in Eulerian coordinates). By using the divergence theorem and Reynolds transport

theorem (see Appendix C), noting that



D1J
—=(V-v)]
O (V-v)
where J is the Jacobian:
=X
ax'J

the following are obtained by substitution,

o e M8 jao [ 5
= [[fo (v vi Jaa+ IR )dm il v
- %I”Q[%(pvivi) +{pvv )Ij v+ pviviv'jj]dg

= —;—J.J‘J‘Ql:viv- %— + p (vivi) + p|jViViVj + p(ViVi )IJ Vj + pViViViij}Q

] HIQBViVi(%? v )u) ' Vi(péale ¥ p"'iivjﬂdg

where the following relation is used:

AL _gij a(gikV )

at et
v, 6vk
g glk i3

) k

= a_v_

k") ot

v
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(B.9)

(B.10)

(B.11)

(B.12)



Similarly, for the internal energy:

D0 {2} 22l

thus, by grouping terms, the following is obtained:

i1, (—+<pv W e

+ffgy ( T+ pvivi-pF - stz

.[.U (p—+pehv ~TY V —qj - ph]dQ:O

where E = € + 1/2 viv;.

In order for this relation to hold, each of the integrands must vanish. That is,

(conservation of mass) Z—T + (pv W =0,

OV i opi i
(conservation of momentum) p—t— +pvjiv —pF =T =0,
(conservation of energy) pg—t + pgj; vi-T Jv Qh ph =0.

In the more familiar notation, this becomes:

ip

+V. =
3t (pv) =
p—D——pF—V-T=O
p—D—E—T (Vv) -V-q-ph=0

Dt
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(B.13)

(B.14)

(B.15)

(B.16)
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In order to reduce the conservation of momentum and energy equations into a more

tractable form, the stress tensor Tj; is analyzed. Stokes proposed in 1845 [279] that the
stress tensor should be of the form Tj; = —l'ISij + f(djj), where IT is the thermodynamic
(isotropic) pressure and f(djj) is a function of the rate-of-deformation tensor

dij =1/2(vy + Vili)- The generalized form of Hooke’s law for linear elasticity is:

fij = Eijkmd ™. (B.17)

where the most general form of Ejjkm for an isotropic medium is
Eijkm = A3ij8km + 1(Bik8jm+8imdkj) + E(Bik8jm-dimkj) (B.18)

Recall that fj; must be symmetric. Thus,

Eijkm = Ejikm = Exmij = Ejimk 2 §=0 (B.19)

The explicit form of f can be written as :

fij = Eijkmd*™ = (A8i8km + M(8ikjm+8imOkj))dk™ (B.20)

or more simply as f;; = kdtﬁij +2pdy;- A is called the dilatational viscosity, and W is the

shear viscosity. To relate the two constants, note that the mean pressure is proportional to

the trace of the stress tensor. That is, T}=—3p=——31’1+3)»d%+2ud% or

M-p= (k+ —i—p.)d: Because the thermodynamic pressure is nearly equal to the mean

) . 2 ) ) ) .
pressure (for quasi-static processes), A= —Eu. Thus, the dilatational viscosity can be
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eliminated and instead write Tj; = —pd;; + fj;, where fij= ZM(dU _%dtéijj . Thus, the

term V- T is re-written as —Vp+ uV2v for incompressible fluids.

The conservation of momentum equation in cylindrical coordinates for an isotropic

incompressible fluid in the prescence of gravity can now be written. Also required are the

non-zero connection coefficients:

Tgg=-r

6 _ 0 _1
Tor=Tro=1

This provides the general Navier-Stokes equations in (T, 0, z) coordinates:

—L 4y —L T pyg——L+v

av, v, v§  lavg . avi|_
ar r 9 90 9z

(r-component)

-7 2

2 2
ap |a(1a 1o%v, 2dvg v
" { ( r )+; aezr r2 96 i azr

Vv A%
at  Tar %r a8 ooz
Z-component)
(-comp Lo av,) 1%y, a*v,
+ul-—Ir +— +—= |+ g,

9z rar\ or ) r? 98% 9z

av ov V.V av av
p( e+vr 0+ re+vl e+vZ 9):
at or r r 06 0z
(8-component) 5
lap J la(l'Vg) 10 Vo 2 avr Vg
el el t7 2 t7 -7
r 90 dr\r odr r- 990 c 00 r

and the conservation of mass equation

1a(rvy) +16V9 + av, -0
r odr r 08 oz

|

32 VB

0z

2

|

(B.21)

(B.22)

(B.23)

(B.24)

(B.25)
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This can be greatly simplified by considering only axisymmetric flows. The

equations reduce to:

2 2
av av, Vv av ap a(lo v
r-component) p| —L +v, —L -8 4y —L|=——S4 —(—— v )+ Ll (B.26
( P )p( ot "or r ° az] ar “[ar rar( ) 9z? (B.26)

2
_3_P+“[li(ra_v_z_)+__a "22}+ng (B.27)

(z-component) p(avz +v AP +v avz)
P at ' Jz ror\ or 9z

or 2 9z

2
av av A/ av 9 (1d(rvg)) d°v
0-component By 270,10y 9): —(— 6 )+ i B.28
( P )p( ot " or r 2 9z " or\r or 322 ( )

(Conservation of mass) Wy + lM =0. (B.29)
dz r Or

For fluids at a constant temperature, the conservation of energy equation is trivial. For
numerical computations, the Navier-Stokes equations are usually written in dimensionless

form, by introducing the Reynolds number pvR/JL.

Dv _pilyp-Llvtvoo (B.30)
Dt P Re



Appendix C.

BOUNDARY CONDITIONS ACROSS SURFACES OF DISCONTINUITY

The boundary conditions that occur at a surface of discontinuity between two
distinct volume regions are derived. The kinematic boundary condition for a moving

surface of discontinuity is then derived.

Figure C.1. Schematic of a surface of discontinuity.

A region Q with a surface of discontinuity X is defined (see Figure C.1). Z divides

Q into Q+ and Q-. The region Q% is bounded by S* and £. Also defined is
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9Q* =3 USE. For any point a € £ a function F (a quantity to be balanced across the

interface) is defined as:

F= [pfdQ (C.1)
Q(t)

F¥(a,)= lim FE(r,t) (C2)

r—a

[F(a,t)] =F*(a,t)-F (a,t)

where [F(a,t)] represents the jump of F across the interface . Also defined are the

velocities vy of the surfaces S* and Z:

vir)=virR),H=F" onS* (C.3)
vi(r,)=v (r(R,t),t)=F  on S

+ I -
Vg -Ny = Vg Ny =V onX

where v is the velocity of the fluid particles. The total time rate of change of the quantity F

is:

D jpfdsz:_D. foret 40+ 2 [p7fde
t Dt ! Dt -
Q(t) QT Q (1) (C4

which is split up into Q* and Q- regions. For each region,

_DDT [p*ttaQ= | —(?t—(p+f+)d£2+ [otfrv* -n*dz- [prftvadz  (C5)
Q) Qt () st Z(t)
= j %(p+f+)d§2+ [p*f*v* -n*dz- jp*f*s;dz
Q* (1) aQ* (1) (1)
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and

oo [ Sprr)es [orvowee e co

Q7(t) Q7 () S7(v) Z(V
=ja(pf)d§z+ oty mdz+ [pfs; dz
Q (V) Q™ (1) (1)

where sﬁ =v, - vi -ny is the relative normal velocity of the interface ¥, compared to the
velocity of the interfaces S*. Note that for a material surface of discontinuity, snp = 0. The

Reynolds transport theorem is used as well:

(C.7)
~F= D J'pf do
Dt t
Q(t)

_D [ty a@
Dt
Q(0)

= | -l%(pr) dQ

Q(0)

= (fJ f+pf—D—J) dQ
Q0)

(f@ Df , otv. ij dQ
Dt | Dt
Q(O)

(f Dt +pr v)dQ
( t (pH)+V( pfv)) dQ

_[ (pf) dQ2+ jpfv ndz
Q(t) Z(t)

Adding together the contribution from each region QF,
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D 3 3 .
ag{(;))fd§2=g+‘[(t)a(p+f+)dQ+QJ(t)a(p £7) de+ (C.8)
jp’“f*‘v"n+ ds+ [p7f7v -mTdE- [ipfs,1dz
Q" (1) Q™ (1) Z(t)

or, alternatively,

% [pfaQ= f p% dQ- [[pfs,]d=. (C.9)
Q1) Q(t) Z(t)

Thus, the total time rate of change of a quantity F has a contribution from the bulk region
Q as well as a contribution from the dividing surface X.
The following balance law for regions with a surface of discontinuity is now

postulated seperately:

% [pra@= [pQd@- [j-ndz+ [gdz
Q(t) Q1) aQ(t) Z(t) (C.10)

where Q is a source in the bulk region, g is a source on the surface Z, and j-n is the flux
of pf across the surface . Equating the two expressions for the time rate of change of pf

in the entire region,

Df .
| (p—D—t—pQ) d@=- [jndz+ [(pfs,]-g)d=
Q1) 8Q1) (1) (C.11)

Taking the limit as £ shrinks down to an arbitrary size, leaving only Z,



lim jp(D—f-Q)dQ =0
Q(t)—0 o) Dt

so that
0= [([j-nl-Ipfs,]-g)d=
()

or

[pfs,]1=[j-n]-g
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(C.12)

(C.13)

(C.14)

This represents the jump in a physical quantity density f across and interface moving at a

relative speed sp. There is a contribution from a surface source (if any), as well as the flux

of the quantity through the interface. For a jump mass balance (f=1, g=0) at a phase

interface when interfacial effects are ignored,

[p(j'n_sn)]=0

(C.15)

This relates the velocity of a surface of disontinuity to the rate of mass flow, which can be

re-written into a kinematic condition for the surface by writing explicitly the form of sp.

Now the kinematic boundary condition is derived. Let F(a, t) represent the surface

T which separates two imiscible phases o and 3. F is not to be confused with the generic

quantity F used above. The surface normal is defined in the usual way,

VF
ns——
|VF|

For any point a € £ on the surface the following physical constraints are required:

[1] no mass will pass through the interface .
[2] The two fluids will remain in continuous contact

[3] If both fluids have non-zero viscosity, there is no slip along the surface .

(C.16)
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[4] linear momentum is conserved across the interface

Conditions [1] and [2] dictate that at any point a on the surface, the component of
fluid velocity v(a,t) normal to the surface F(a,t) = 0 must be equal to the velocity of the
surface vq(a,t) along the direction n(a,t), the unit normal to the surface F(a,t) =0 . This is
written as:

lim v (r,t)-n(r,t) = vy (a,0) (C.17)

r-a
reQd;

forall a€ 3 . Now consider the trajectory of a point, ap(t) which lies on the surface Z.

F(ay(1),1) =0 (C.18)

as the trajectory of the surface. Differentiating,

VF~v(ap,t)+%I;:=O (C.19)

9

where v(ap,t) is simply the velocity of the surface at point “p”. The normal component

of the velocity of the surface is then:

VF
.n= c— C.20
v(a,t)-n=v(a,t) vE ( )

which is equated with the normal component of the fluid velocity at the interface. The

surface normal velocity is: (by substitution in Equation C.19)

-1 oF

- C.21
VE ot (©2b

vy(a,t)y=



and from substitution into Equation C.17,

lim v(i)(r,t) -VF(a,t) = _9F
r—a at
red;

which is known as the kinematic boundary condition.
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Appendix D.

A THERMODYNAMIC DERIVATION OF YOUNG AND LAPLACE
EQUATIONS USING THE GENERALIZED THEORY OF CAPILLARITY

In this appendix Young’s equation, the Neumann triangle relation, and the

Laplace equation for the jump in pressure across an interface for surfaces and three-phase

lines of arbitrary curvature are derived. Recall that Gibbs’ derivation of the Young

equations holds only for interfaces of small curvature. In a manner similar to Gibbs, a

thermodynamic approach is used to derive an energy relation, and by minimizing the
energy functional, the relevant equations are obtained.

Begin with the relation between the bulk internal energy and the surroundings. (the

fundamental equation):

du® = Tds® + 3 pp{? (D-1)
i

Q Q Q
dU® =Tds® - pd@ + ¥ p;dM{® (D.2)

1

Equation D.1 is the intensive form and Equation D.2 is the extensive form of the equation.
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1. Surface energy

The fundamental equation for surfaces can also be formulated. Define the excess

energy of a surface separating two phases o and B to be

u® = y@ _yQa) g (D3)

The internal energy is a function of the surface entropy, area, and chemical
constituents. In addition, work can be performed by changing the curvature of the interface,
independant of the change in area. The principal radii of curvature are convenient quantities
to describe this change. However, they are not differential invariants [280]. Therefore, the
invariant quatities J,K are used (mean and Gaussian curvatures).

1
J= E(Kl + Kz) (D4)

K= K1K2

The surface internal energy is thus a function of surface entropy, area, chemical potential,

and curvature.

%) _ (D[ 4 & z
u® =yl )[S( pi%,p8% .y )’J’K] (D.5)

Curvature potentials can be introduced, usually called the first and second bending

moments:

(2)
C =(a“1 } (D.6)
d 5® foP) K

i
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Co = gu®
K =
oK $® [olDg
» p )

1

The differential form of the fundamental equation in intensive and extensive forms are:

du® =Tds™® + ¥ pipl® +CydJ + CgdK (D.7)
i
dU® =Tds® +ydz+ Y wM{® +CjdJ + CgdK

where J,K are surface integrals of J,K.

J=[[rdz (D.8)
z

K=|[Kdaz
z

and the interfacial energy is defined as:

(aU(E))
Y=
0Z s(’-),{M@)},J,K

(D.9)

Similarly, an expression for the internal energy of a three-phase line can be written.
Following the reasoning behind excess surface energy, the excess line internal energy

between surface phases o and f is defined as:

(Zg)

u® =y®_yEd _y (D.10)
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Two quantities are required: the contact angles ¢j;* between surfaces j and j’ at a multiphase

contact line, and the curvature terms Ky, Kg, and T [280]. The contact angles satisfy

Y 45 =2n (D.11)
b}

while the normal and geodesic curvature terms satisfy

2 2 2
K%ll + Kél =Xn2 +K§2 = Kﬁ3 +Kg3 =XK". (D.12)

giving the differential form of the fundamental equation:

du(® =Tds + T pidp{? + 3y, dbjj + X (Crjdkyj + Coidig +Cydr; ) (D.13)
i (i) ()
dU® =Tds® +0de+ T MO + ¥ Co @y + 2 (CiKnj + CoiKg +CqTj)
i (i) ()

where ®jj', Kyj, Kgj, and Tj are integral quantities of @j;', Knj, Kgj, and Tj, respectively,
Cejj, » Chjs Cgj» and Crj are mechanical potentials analogous to the bending potentials for

surfaces, and the line tension is defined as:

(0
o= (3U ] (D.14)
af S([)v{MEI)}‘(D_]_]' *Knj’ng’Tj
Finally, the fundamental equation for points is written:
du® =Tds@ + Y pipl® + 3 Cy, 01 (D.15)

i )
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where ) represents the vertex angle between intersecting lines | and I’. This equation is

the same in internal and external forms.
The generalized Laplace equation, Neumann triangle relation, and Young equation
are now derived. This is a variational problem of equilibrium, and the method of Lagrange

multipliers is used:
f=ug - Ts= D Fip; (D.16)

no ny l ns g
s1=0=Y8[[[fPaQ + Y 8[fPdz + Y[ ar+ DT
k=1 Q k=1 = k=1 ¢ k=1

where T and [ are constant Lagrange multipliers, and n is the number of distinct bulk
phases, dividing surfaces, lines and points. The solution is rather lengthy, and the reader is
encouraged to see reference [281] for a full derivation. The condition of mechanical

equilibrium for a dividing surface becomes:
2Jy+2KC; - VAC, =KV5 - (V2Cy) - p¥n- Vo = AP (D.17)
Here, the surface gradents are defined as:

Vy = (evxn—a—+nxeui),and (D.18)
du av

|eu xey|

KV; = JV2 + (Vzn) g V2 .
If we assume constant potentials:

2]y +2KC, = AP (D.19)
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and neglect curvature, this reduces to the classical Laplace equation:

2Jy = AP. (D.20)

The formulation for the contact line at equlibrium is: (generalized Neumann triangle

relation)

o+ 2C¢” q)JJ' K= E(Y(J) + (Cq)l.ll - C¢”2 )Knj )1_] (D.21)
(i) J

Where n; is the outwardly pointing normal to the line tangent to the jth surface. We have
assumed the line curvature potentials and line tension are constant along the dividing line.
The most general form is extremely complex and is available elsewhere [281]. The order
of dividing surfaces around the dividing line has been set to be j1, j and jp.

Young’s equation is derived from Equation D.21. The bulk phases are re-labeled
with subscripts (s) for solids, (1) for liquid, and (v) for vapor. Similarly, the dividing
surfaces will be labeled V), 5D, and V). For the dividing line, the equation of equilibrium

is:

(o + (C¢] —Cov )q)l )Kgs + [y(lv) + (C¢l —Cov )(Knscosq)] — KggSing) )]cosq)l =

'Y(Sv) - Y(Sl) + (Cq)l - C¢V)Kns

(D.22)

Which can be further approximated by neglecting the curvature potentials:

Ey(j)nj -ok=0
i (D.23)

YY) 48D yMeoso + OKgs =0
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Which are the classical Neumann triangle and classical Young's equation, with a line
tension term added. It should be noted that the simplifying assumptions recover the

classical Laplace equation but not the classical Young equation.



Appendix E.

EXPLICIT DERIVATION OF THE NORMAL PRESSURE BALANCE
ACROSS AN INTERFACE

Normally, this is just presented and left as an exercise to the reader. Here is an
explicit derivation. In this appendix, for clarity, the “comma” signifier is omitted, and the
presence of a subscript will indicate partial differentiation with respect to the subscripted

variable. The equation of the liquid bridge surface is defined in the following form:

F=r-f(0,z,t) (E.1)

where f represents the deviation of the surface from a cylinder of radius R. An expression
for the normal pressure balance, which is related to the curvature of the surface: Ap =2Jy,
where J is the mean curvature and v is the interfacial energy is to be derived. the mean

curvature is related to the surface normal, expressed in cylindrical coordinates:

2J=V~n=-1—é—(mr)+——(n9)+—a—(nz) (E.2)
r

where the divergence is expressed in cylindrical coordinates (r,0,z). The normal is the

normed gradient of the surface, also expressed in cylindrical coordinates:
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IF O, LOF
VF _ ar " 32 % rae@

n= = 72
VH (aF)Z (ap)z (131:)2
Jar dz r 00

1
e -f,e, -;feee

re, - rf ,e, - fgeg

SN2 " T2 2.2 .. 2172
[1+f§+(f—9)} b +rf7 1]
r

and thus the curvature can be expressly written as the following:

1 -[rz +r2f§ + fﬁzlllz ~2r—r3(1+f§)[r2 + rzf% +f82]‘”2

or —TL [r2+r2fg+f92]

[ 2 r3(l+f§)

L[r2 +r2f§ +f92]”2 ) [r2 +r2f§ + f92]3/2

I

[ 172 -1/2
li(n )_l [ 4022 4162 -foo = Fo(rFafag +Fofap[r2 +r7f +fo?
reel 0/ ¢ [r2+r2f§+f92]
_1 Fog _ rfof,f 20 + Faf0
r urz +r2f2 +f82]”2 [r2 +r2f2 +f92]3/2
i(n ) [¢2+r21 +f97-]”2 g =16, (2 + fofag |12 + 113 +f92]_”2
9z ¢ [r2+r2f§+f92]

tf,, 2128, + 1, ofq,

72 ~ 3/2
[r2+r2f§+f62] [r2+r2f§+f92]
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(E4)

(E.5)

(E.6)
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2
f5feg

2 2 - 3
2z r (1+fz)"rf9fztzﬁ - =T f%fzz —rfzfﬂf(')z

(22 v 2] (E.7)

f
288
V-n= r

172 ~
2, .22 2
[I' +r fz+fe ]

202(1+£3)+ 213 ~ rfgo(1 +f§)—£*2lfi"-—r3(1 +62)f 5 — tfhf

1 r

[r2 +r2f§ +f92]

3/2 f2f
~c(1+13)+ rfgf 9 + 24 £ f, + fofpf
r

r(1+62)(r - fon) - tf 1 (12 + 63 )+ 2 (fg + £ )

372
[r2 +r2f2 +f92]

which is in agreement with [62,68,118). This can be simplified in the case of

axisymmetric bridges to :

r2(1+ £2) -ty

[r2 (1+£2 )]3/2

V.n=

(E.8)
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